

The Netherlands Battery Recycling Market Forecast 2026-2034

Market Report | 2026-01-19 | 135 pages | Inkwood Research

AVAILABLE LICENSES:

- Single User Price \$1100.00
- Global Site License \$1500.00

Report description:**KEY FINDINGS**

The Netherlands battery recycling market size is set to be valued at \$243.44 million as of 2026 and is expected to reach \$586.21 million by 2034, progressing with a CAGR of 11.61% during the forecast years, 2026-2034.

MARKET INSIGHTS

The Netherlands battery recycling market demonstrates robust expansion driven by strategic positioning as a European logistics hub and accelerating electric vehicle deployment across urban centers. The Netherlands is seeing a steady rise in battery electric vehicle registrations. This growth trajectory creates substantial future recycling volumes as batteries reach end-of-life stages. Moreover, the country's advanced port infrastructure in Rotterdam and Amsterdam facilitates efficient battery collection and distribution networks throughout Europe. These strategic advantages enable Dutch recyclers to aggregate batteries from multiple countries for centralized processing.

Additionally, stringent EU regulations mandate minimum recycled content requirements, driving domestic capacity investments. By the end of 2025, manufacturers must recycle at least 65% of a battery's total weight, increasing to 70% by 2030. The Netherlands government supports circular economy initiatives through substantial subsidy programs. In April 2024, the government allocated USD 109 million in subsidies for battery storage installations alongside solar projects, part of a broader USD 453 million subsidy package.

Furthermore, Dutch research institutions collaborate with private companies to advance innovative recycling technologies. In January 2025, research organization TNO and company SusPhos plan to develop an economically viable recycling process for LFP batteries, aiming to recover critical materials such as lithium and phosphate in a profitable process. These public-private partnerships accelerate technology commercialization while reducing processing costs. Consequently, the Netherlands emerges as an attractive destination for recycling facility investments, combining regulatory certainty with innovation capabilities. Dutch companies embrace closed-loop partnerships with automotive manufacturers, securing long-term material supply agreements. These collaborations guarantee feedstock availability while creating offtake certainties for recovered materials. Novocycle established a pilot recycling facility in South Limburg, uniquely positioned near the borders of Germany and Belgium, providing efficient access to key battery manufacturers and major European markets.

The region's commitment to sustainability and innovation makes it prime for business expansion, attracting investment and driving industry adoption. Traditional recycling methods rely on shredding and energy-intensive chemical processes, leading to waste and pollution. However, Novocycle's approach preserves high-purity cathode and anode materials, significantly reducing

environmental impact while maximizing recovery efficiency.

Currently, production residual materials from battery pack manufacturing represent the main recycling feedstock source.

Therefore, recyclers establish facilities near manufacturing clusters, capturing scrap materials efficiently. Economic factors, including reduced inflation and rising wages, enhance consumer purchasing power, supporting increased EV investments. Government incentives for sustainable transportation, combined with ambitious emission reduction targets, drive market momentum.

However, the Netherlands continues to rely heavily on imports to meet growing battery demand. Strategic trade positions and advanced logistics infrastructure facilitate efficient import management. Nevertheless, this import dependence poses domestic manufacturing challenges, underscoring the need for strategic local production investments to ensure balanced supply chains.

SEGMENTATION ANALYSIS

The Netherlands battery recycling market is segmented into chemistry, application, recycling process, and source. The source segment is further categorized into automotive batteries, industrial batteries, and consumer electronics.

The industrial batteries source segment captures a significant market share, driven by the Netherlands' substantial renewable energy storage deployment and telecommunications infrastructure requirements. Industrial batteries power stationary applications, including uninterruptible power supply systems, telecommunications networks, and grid-scale energy storage facilities. In February 2024, RWE broke ground on the Netherlands' utility-scale battery storage project, boasting 35 megawatts of power capacity and 41 megawatt-hours storage capability, integrating 110 lithium-ion battery racks with operations set to commence by 2025. These large-scale installations generate substantial battery volumes requiring eventual recycling when capacity degrades.

Moreover, telecommunications operators maintain extensive backup power systems across the network infrastructure. These batteries operate continuously in float charge modes, experiencing gradual capacity loss over 5-10 year periods. Consequently, regular replacement cycles create predictable recycling flows. Dutch recyclers benefit from established collection relationships with industrial facility operators. Maintenance contracts include battery replacement and disposal services, ensuring systematic material recovery.

Additionally, industrial batteries typically possess standardized formats, simplifying disassembly and processing operations.

Recycling facilities optimize workflows for common industrial battery configurations, achieving superior economics. The Netherlands' leadership in renewable energy integration drives energy storage system proliferation. Solar and wind power variability requires battery buffering for grid stability.

Therefore, utility-scale storage deployments are accelerating rapidly, supported by government subsidies. These installations deploy thousands of battery modules, creating concentrated recycling opportunities. Furthermore, second-life applications extend industrial battery usefulness before final recycling. Retired EV batteries suitable for stationary storage delay recycling flows while providing value. However, eventual processing requirements remain, creating deferred demand. Dutch companies develop expertise in managing both primary industrial batteries and second-life EV batteries repurposed for stationary applications.

COMPETITIVE INSIGHTS

Some of the top players operating in the Netherlands battery recycling market include Umicore, Ecobat Technologies, Auto Recycling Netherlands (ARN), Novocycle, etc.

Auto Recycling Netherlands (ARN) operates as the country's leading producer responsibility organization, managing end-of-life vehicle collection and recycling throughout the Netherlands. The organization coordinates nationwide networks connecting over 200 chain partners, including car dismantling companies, shredder facilities, and material recovery operators. ARN administers recycling fees for passenger vehicles while ensuring compliance with Dutch environmental regulations and EU directives.

The organization recently expanded services addressing electric vehicle battery management challenges. They operate comprehensive EV battery management programs enabling automotive importers to fulfill extended producer responsibility obligations. ARN coordinates safe collection, transportation, and processing of end-of-life EV batteries through certified partners. The organization maintains strict safety protocols addressing fire risks during battery handling and storage. Their network provides convenient drop-off locations enabling vehicle owners to dispose of end-of-life cars, including batteries, free of charge at nearby dismantling facilities.

ARN's business model emphasizes circular economy principles, recovering maximum value from automotive materials. The

organization facilitates material flows to specialized recyclers, ensuring batteries reach appropriate processing facilities. Furthermore, ARN invests in education programs training dismantlers on proper EV battery removal and handling procedures. This capacity building strengthens the Netherlands' recycling infrastructure capabilities. The organization's established relationships with automotive manufacturers and importers create comprehensive collection coverage across the country, ensuring systematic battery recovery and supporting circular supply chains.

COMPANY PROFILES

1. ACCUREC RECYCLING GMBH
2. ECO-BAT TECHNOLOGIES LTD
3. EXIDE TECHNOLOGIES
4. UMICORE SA
5. GS YUASA CORPORATION
6. AUTO RECYCLING NETHERLANDS (ARN)
7. NOVOCYCLE

Table of Contents:

TABLE OF CONTENTS

1. RESEARCH SCOPE & METHODOLOGY
 - 1.1. STUDY OBJECTIVES
 - 1.2. METHODOLOGY
 - 1.3. ASSUMPTIONS & LIMITATIONS
2. EXECUTIVE SUMMARY
 - 2.1. MARKET SIZE & FORECAST
 - 2.2. MARKET OVERVIEW
 - 2.3. SCOPE OF STUDY
 - 2.4. CRISIS SCENARIO ANALYSIS
 - 2.5. MAJOR MARKET FINDINGS
 - 2.5.1. THE NETHERLANDS IS EXPERIENCING A RAPID SURGE IN BATTERY WASTE VOLUMES AS EV ADOPTION ACCELERATES ACROSS URBAN REGIONS
 - 2.5.2. THE COUNTRY IS EMERGING AS A KEY LOGISTICS AND RECYCLING HUB FOR EUROPE DUE TO ITS STRATEGIC PORT INFRASTRUCTURE
 - 2.5.3. STRONG PUBLIC-PRIVATE COLLABORATION IS DRIVING INVESTMENTS IN NEXT GENERATION BATTERY MATERIAL RECOVERY TECHNOLOGIES
 - 2.5.4. STRINGENT EU REGULATIONS ARE PUSHING DUTCH COMPANIES TO PRIORITIZE CLOSED-LOOP BATTERY RECYCLING SYSTEMS
 3. MARKET DYNAMICS
 - 3.1. KEY DRIVERS
 - 3.1.1. EU MANDATES ON MINIMUM RECYCLED CONTENT AND HIGHER COLLECTION TARGETS ARE BOOSTING NATIONAL RECYCLING CAPACITY
 - 3.1.2. RISING EV SALES AND GROWING DEPLOYMENT OF ENERGY STORAGE SYSTEMS ARE EXPANDING THE VOLUME OF END-OF-LIFE BATTERIES
 - 3.1.3. GOVERNMENT INCENTIVES AND CIRCULAR ECONOMY POLICIES ARE ENCOURAGING PRIVATE SECTOR RECYCLING INVESTMENTS
 - 3.1.4. TECHNOLOGICAL ADVANCEMENTS IN HYDROMETALLURGY AND AUTOMATED SORTING ARE IMPROVING RECOVERY RATES AND ECONOMIC VIABILITY
 - 3.2. KEY RESTRAINTS
 - 3.2.1. LIMITED DOMESTIC PROCESSING CAPACITY FOR HIGH ENERGY DENSITY LITHIUM ION BATTERIES IS CREATING SUPPLY BOTTLENECKS

- 3.2.2. COMPLEX EU COMPLIANCE REQUIREMENTS ARE INCREASING COST BURDENS FOR SMALL AND MIDSIZED RECYCLERS
- 3.2.3. UNCERTAINTY AROUND LONG-TERM EV BATTERY CHEMISTRY SHIFTS IS MAKING CAPITAL DECISIONS RISKIER FOR RECYCLERS
- 3.2.4. SAFE TRANSPORT AND STORAGE OF SPENT BATTERIES REMAINS A CHALLENGE DUE TO STRICT SAFETY RULES AND HIGH LIABILITY

4. KEY ANALYTICS

4.1. KEY MARKET TRENDS

- 4.1.1. COMPANIES ARE INCREASINGLY PARTNERING WITH AUTOMAKERS FOR CLOSED-LOOP MATERIAL SUPPLY AGREEMENTS
- 4.1.2. SECOND LIFE BATTERY APPLICATIONS ARE GAINING TRACTION IN GRID STORAGE AND COMMERCIAL BACKUP SYSTEMS
- 4.1.3. DIGITIZATION OF COLLECTION AND TRACKING SYSTEMS IS IMPROVING TRACEABILITY AND REGULATORY COMPLIANCE
- 4.1.4. INVESTORS ARE FOCUSING ON RECYCLING STARTUPS USING LOW-CARBON PROCESSES TO MEET EU SUSTAINABILITY TARGETS

4.2. PORTER'S FIVE FORCES ANALYSIS

4.2.1. BUYERS POWER

4.2.2. SUPPLIERS POWER

4.2.3. SUBSTITUTION

4.2.4. NEW ENTRANTS

4.2.5. INDUSTRY RIVALRY

4.3. GROWTH PROSPECT MAPPING

4.3.1. GROWTH PROSPECT MAPPING FOR THE NETHERLANDS

4.4. MARKET MATURITY ANALYSIS

4.5. MARKET CONCENTRATION ANALYSIS

4.6. VALUE CHAIN ANALYSIS

4.6.1. BATTERY COLLECTION

4.6.2. LOGISTICS HANDLING

4.6.3. DISASSEMBLY OPERATIONS

4.6.4. CHEMICAL PROCESSING

4.6.5. MATERIAL SEPARATION

4.6.6. REFINED OUTPUTS

4.6.7. OEM REINTEGRATION

4.7. KEY BUYING CRITERIA

4.7.1. RECOVERY EFFICIENCY

4.7.2. PROCESS COSTS

4.7.3. REGULATORY COMPLIANCE

4.7.4. MATERIAL PURITY

4.8. REGULATORY FRAMEWORK

5. BATTERY RECYCLING MARKET BY CHEMISTRY

5.1. LEAD-ACID

5.1.1. MARKET FORECAST FIGURE

5.1.2. SEGMENT ANALYSIS

5.2. NICKEL-BASED

5.2.1. MARKET FORECAST FIGURE

5.2.2. SEGMENT ANALYSIS

5.3. LITHIUM-BASED

5.3.1. MARKET FORECAST FIGURE

5.3.2. SEGMENT ANALYSIS

5.4. OTHERS

- 5.4.1. MARKET FORECAST FIGURE
- 5.4.2. SEGMENT ANALYSIS
- 6. BATTERY RECYCLING MARKET BY APPLICATION
 - 6.1. TRANSPORTATION
 - 6.1.1. MARKET FORECAST FIGURE
 - 6.1.2. SEGMENT ANALYSIS
 - 6.2. CONSUMER ELECTRONICS
 - 6.2.1. MARKET FORECAST FIGURE
 - 6.2.2. SEGMENT ANALYSIS
 - 6.3. INDUSTRIAL
 - 6.3.1. MARKET FORECAST FIGURE
 - 6.3.2. SEGMENT ANALYSIS
 - 6.4. OTHER APPLICATIONS
 - 6.4.1. MARKET FORECAST FIGURE
 - 6.4.2. SEGMENT ANALYSIS
- 7. BATTERY RECYCLING MARKET BY RECYCLING PROCESS
 - 7.1. HYDROMETALLURGY
 - 7.1.1. MARKET FORECAST FIGURE
 - 7.1.2. SEGMENT ANALYSIS
 - 7.2. PYROMETALLURGY
 - 7.2.1. MARKET FORECAST FIGURE
 - 7.2.2. SEGMENT ANALYSIS
 - 7.3. LEAD ACID BATTERY RECYCLING PROCESS
 - 7.3.1. MARKET FORECAST FIGURE
 - 7.3.2. SEGMENT ANALYSIS
 - 7.4. LITHIUM-ION BATTERY RECYCLING PROCESS
 - 7.4.1. MARKET FORECAST FIGURE
 - 7.4.2. SEGMENT ANALYSIS
- 8. BATTERY RECYCLING MARKET BY SOURCE
 - 8.1. AUTOMOTIVE BATTERIES
 - 8.1.1. MARKET FORECAST FIGURE
 - 8.1.2. SEGMENT ANALYSIS
 - 8.2. INDUSTRIAL BATTERIES
 - 8.2.1. MARKET FORECAST FIGURE
 - 8.2.2. SEGMENT ANALYSIS
 - 8.3. CONSUMER ELECTRONICS
 - 8.3.1. MARKET FORECAST FIGURE
 - 8.3.2. SEGMENT ANALYSIS
- 9. COMPETITIVE LANDSCAPE
 - 9.1. KEY STRATEGIC DEVELOPMENTS
 - 9.1.1. MERGERS & ACQUISITIONS
 - 9.1.2. PRODUCT LAUNCHES & DEVELOPMENTS
 - 9.1.3. PARTNERSHIPS & AGREEMENTS
 - 9.1.4. BUSINESS EXPANSIONS & DIVESTITURES
 - 9.2. COMPANY PROFILES
 - 9.2.1. ACCUREC RECYCLING GMBH
 - 9.2.1.1. COMPANY OVERVIEW

9.2.1.2. PRODUCTS
9.2.1.3. STRENGTHS & CHALLENGES
9.2.2. ECO-BAT TECHNOLOGIES LTD
9.2.2.1. COMPANY OVERVIEW
9.2.2.2. PRODUCTS
9.2.2.3. STRENGTHS & CHALLENGES
9.2.3. EXIDE TECHNOLOGIES
9.2.3.1. COMPANY OVERVIEW
9.2.3.2. PRODUCTS
9.2.3.3. STRENGTHS & CHALLENGES
9.2.4. UMICORE SA
9.2.4.1. COMPANY OVERVIEW
9.2.4.2. PRODUCTS
9.2.4.3. STRENGTHS & CHALLENGES
9.2.5. GS YUASA CORPORATION
9.2.5.1. COMPANY OVERVIEW
9.2.5.2. PRODUCTS
9.2.5.3. STRENGTHS & CHALLENGES
9.2.6. AUTO RECYCLING NETHERLANDS (ARN)
9.2.6.1. COMPANY OVERVIEW
9.2.6.2. PRODUCTS
9.2.6.3. STRENGTHS & CHALLENGES
9.2.7. NOVOCYCLE
9.2.7.1. COMPANY OVERVIEW
9.2.7.2. PRODUCTS
9.2.7.3. STRENGTHS & CHALLENGES

LIST OF TABLES

TABLE 1: MARKET SNAPSHOT - BATTERY RECYCLING
TABLE 2: MARKET BY CHEMISTRY, HISTORICAL YEARS, 2022-2024 (IN \$ MILLION)
TABLE 3: MARKET BY CHEMISTRY, FORECAST YEARS, 2026-2034 (IN \$ MILLION)
TABLE 4: MARKET BY APPLICATION, HISTORICAL YEARS, 2022-2024 (IN \$ MILLION)
TABLE 5: MARKET BY APPLICATION, FORECAST YEARS, 2026-2034 (IN \$ MILLION)
TABLE 6: MARKET BY RECYCLING PROCESS, HISTORICAL YEARS, 2022-2024 (IN \$ MILLION)
TABLE 7: MARKET BY RECYCLING PROCESS, FORECAST YEARS, 2026-2034 (IN \$ MILLION)
TABLE 8: MARKET BY SOURCE, HISTORICAL YEARS, 2022-2024 (IN \$ MILLION)
TABLE 9: MARKET BY SOURCE, FORECAST YEARS, 2026-2034 (IN \$ MILLION)
TABLE 10: KEY PLAYERS OPERATING IN THE NETHERLANDS MARKET
TABLE 11: LIST OF MERGERS & ACQUISITIONS
TABLE 12: LIST OF PRODUCT LAUNCHES & DEVELOPMENTS
TABLE 13: LIST OF PARTNERSHIPS & AGREEMENTS
TABLE 14: LIST OF BUSINESS EXPANSIONS & DIVESTITURES

LIST OF FIGURES

FIGURE 1: KEY MARKET TRENDS
FIGURE 2: PORTER'S FIVE FORCES ANALYSIS
FIGURE 3: GROWTH PROSPECT MAPPING FOR THE NETHERLANDS

FIGURE 4: MARKET MATURITY ANALYSIS

FIGURE 5: MARKET CONCENTRATION ANALYSIS

FIGURE 6: VALUE CHAIN ANALYSIS

FIGURE 7: KEY BUYING CRITERIA

FIGURE 8: SEGMENT GROWTH POTENTIAL, BY CHEMISTRY, IN 2025

FIGURE 9: LEAD-ACID MARKET SIZE, 2026-2034 (IN \$ MILLION)

FIGURE 10: NICKEL-BASED MARKET SIZE, 2026-2034 (IN \$ MILLION)

FIGURE 11: LITHIUM-BASED MARKET SIZE, 2026-2034 (IN \$ MILLION)

FIGURE 12: OTHERS CHEMISTRY MARKET SIZE, 2026-2034 (IN \$ MILLION)

FIGURE 13: SEGMENT GROWTH POTENTIAL, BY APPLICATION, IN 2025

FIGURE 14: TRANSPORTATION MARKET SIZE, 2026-2034 (IN \$ MILLION)

FIGURE 15: CONSUMER ELECTRONICS MARKET SIZE, 2026-2034 (IN \$ MILLION)

FIGURE 16: INDUSTRIAL MARKET SIZE, 2026-2034 (IN \$ MILLION)

FIGURE 17: OTHER APPLICATIONS MARKET SIZE, 2026-2034 (IN \$ MILLION)

FIGURE 18: SEGMENT GROWTH POTENTIAL, BY RECYCLING PROCESS, IN 2025

FIGURE 19: HYDROMETALLURGY MARKET SIZE, 2026-2034 (IN \$ MILLION)

FIGURE 20: PYROMETALLURGY MARKET SIZE, 2026-2034 (IN \$ MILLION)

FIGURE 21: LEAD-ACID BATTERY RECYCLING PROCESS MARKET SIZE, 2026-2034 (IN \$ MILLION)

FIGURE 22: LITHIUM-ION BATTERY RECYCLING PROCESS MARKET SIZE, 2026-2034 (IN \$ MILLION)

FIGURE 23: SEGMENT GROWTH POTENTIAL, BY SOURCE, IN 2025

FIGURE 24: AUTOMOTIVE BATTERIES MARKET SIZE, 2026-2034 (IN \$ MILLION)

FIGURE 25: INDUSTRIAL BATTERIES MARKET SIZE, 2026-2034 (IN \$ MILLION)

FIGURE 26: CONSUMER ELECTRONICS MARKET SIZE, 2026-2034 (IN \$ MILLION)

The Netherlands Battery Recycling Market Forecast 2026-2034

Market Report | 2026-01-19 | 135 pages | Inkwood Research

To place an Order with Scotts International:

- Print this form
- Complete the relevant blank fields and sign
- Send as a scanned email to support@scotts-international.com

ORDER FORM:

Select license	License	Price
	Single User Price	\$1100.00
	Global Site License	\$1500.00
	VAT	
	Total	

*Please circle the relevant license option. For any questions please contact support@scotts-international.com or 0048 603 394 346.

** VAT will be added at 23% for Polish based companies, individuals and EU based companies who are unable to provide a valid EU Vat Numbers.

Email*	<input type="text"/>	Phone*	<input type="text"/>
First Name*	<input type="text"/>	Last Name*	<input type="text"/>
Job title*	<input type="text"/>		
Company Name*	<input type="text"/>	EU Vat / Tax ID / NIP number*	<input type="text"/>
Address*	<input type="text"/>	City*	<input type="text"/>
Zip Code*	<input type="text"/>	Country*	<input type="text"/>
		Date	<input type="text" value="2026-02-10"/>
		Signature	<input type="text"/>

Scotts International. EU Vat number: PL 6772247784

tel. 0048 603 394 346 e-mail: support@scotts-international.com

www.scotts-international.com