

Industrial Radiography Testing - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2026 - 2031)

Market Report | 2026-01-16 | 120 pages | Mordor Intelligence

AVAILABLE LICENSES:

- Single User License \$4750.00
- Team License (1-7 Users) \$5250.00
- Site License \$6500.00
- Corporate License \$8750.00

Report description:

Industrial Radiography Testing Market Analysis

The industrial radiography testing market size in 2026 is estimated at USD 0.82 billion, growing from 2025 value of USD 0.76 billion with 2031 projections showing USD 1.22 billion, growing at 8.25% CAGR over 2026-2031. Accelerating digitalization, stricter integrity codes in energy infrastructure, and the aerospace push for lighter assemblies collectively fuel demand for high-throughput, high-resolution inspection. Adoption of flat-panel detectors cuts exposure time by as much as 90%, improving asset availability while meeting International Atomic Energy Agency (IAEA) safety requirements. Growth is further supported by automated computed tomography (CT) that verifies additive-manufactured parts and by rising inspection frequencies across pipelines, pressure vessels, and wind-blade laminates. Capital-intense upgrades often create short-term budget friction, yet the long-term savings from consumable elimination and faster workflows outweigh initial outlays in most high-volume environments. Workforce shortages of certified Level-III radiographers add urgency to digital adoption because automated image analysis helps offset labor gaps

Global Industrial Radiography Testing Market Trends and Insights

Rising Demand for Volumetric Inspection in Aerospace and Automotive Lightweight Assemblies

Composite airframes and multi-material vehicle bodies require defect visualization beyond the capabilities of 2D techniques. Modern CT systems achieve sub-millimeter resolution on complex geometries, allowing manufacturers to spot delaminations and

Scotts International. EU Vat number: PL 6772247784

tel. 0048 603 394 346 e-mail: support@scotts-international.com

www.scotts-international.com

hidden porosity before they compromise fatigue life. Updated ASTM E1441 provisions now formally accept CT for critical aerospace parts, validating capital investment decisions. Auto OEMs deploy the technology to verify adhesive bond lines in battery enclosures and to monitor wall-thickness uniformity in cast aluminum components. Specialized CT vendors benefit because standard radiography struggles with intricate assemblies that demand 360-degree coverage. System integrators also gain from the ability to embed CT into production lines, closing feedback loops between design, manufacturing, and quality assurance.

Stringent Safety Regulations for Oil and Gas Pipeline Integrity

Following recent pipeline incidents, operators now face higher inspection cadence under revised PHMSA mandates in North America and analogous rules worldwide. Digital detectors detect wall thinning below 10% of nominal thickness, outperforming film while cutting on-site exposure times by as much as 80%. DICONDE-compliant metadata archiving supports traceability, helping operators satisfy 49 CFR Part 195 and corresponding international codes. Service providers offering turnkey inspection-plus-data platforms see growing demand, especially for offshore lines where chemical waste restrictions accelerate the shift from film to digital workflows.

High Cap-ex and TCO of Digital Flat-Panel Detector Systems

Premium detectors range between USD 150,000 and USD 500,000, dwarfing the USD 20,000-50,000 budget for film setups. Detectors degrade after 100,000-500,000 exposures, prompting costly replacements and complex ROI models. Small service firms with limited inspection volume defer upgrades despite long-run savings in film, chemicals, and labor. Financing constraints are sharper in emerging economies, where interest rates and currency volatility inflate project costs, slowing diffusion of digital systems outside large, asset-heavy organizations.

Other drivers and restraints analyzed in the detailed report include:

Migration from Film to Digital Radiography Accelerating Inspection Throughput
Renewable-Energy Build-Out Driving Wind-Blade and Pressure-Vessel Testing
Shortage of Certified Level-III Radiographers

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

Computed tomography expanded the industrial radiography testing market size for technology solutions to USD 0.32 billion in 2026 and is projected to climb at 8.98% CAGR to 2031. Direct radiography, holding 37.55% market share in 2025, remains the volume leader because it balances detector cost and throughput for standard weld and casting checks. CT outperforms on complex geometries and additive-manufactured parts, offering full-volume inspection that film or DR cannot match. Regulatory endorsements such as ISO 15708 reinforce CT penetration in safety-critical applications, especially aerospace.

CT vendors integrate AI-driven defect recognition that shrinks interpretation time and variance among inspectors. Inline CT blends metrology and NDT, allowing automotive foundries to deploy single systems for both dimensional control and internal flaw detection. Film radiography persists in remote sites lacking robust power or connectivity, serving as the low-capex alternative for low-volume work. Overall, rising complexity in manufactured goods will keep CT's growth above the industrial radiography testing market CAGR during the forecast horizon.

X-ray methods generated USD 0.54 billion of industrial radiography testing market revenue in 2026 and are forecast to expand at 9.55% CAGR through 2031. Battery-powered generators, dose-efficient sources, and digital panels make X-ray viable for field jobs

that once defaulted to gamma-ray. Regulatory frameworks favor X-ray because dose rates can be modulated, lowering surrounding exposure and exclusion-zone time.

Gamma-ray maintains a foothold in thick-wall pipeline and refinery vessels that exceed the energy limits of portable X-ray units. Yet innovation in high-energy X-ray tubes is closing this gap, and as detector sensitivity climbs, gamma involvement is set to narrow further. For confined-space inspections, flexible X-ray detectors that wrap around 150 mm diameter pipes reduce shot counts by 65% and cut crew hours. Gamma specialization will concentrate on remote desert and offshore platforms where logistical constraints still outweigh the benefits of X-ray portability.

The Industrial Radiography Testing Market Report is Segmented by Technology (Film Radiography, Computed Radiography, and More), Imaging Technique (X-Ray Radiography and Gamma-Ray Radiography), Component (Detectors, X-Ray Tubes and Generators, and More), End-User Industry (Aerospace and Defense, Oil and Gas and Petrochemical, and More), and Geography. The Market Forecasts are Provided in Terms of Value (USD).

Geography Analysis

North America held 38.20% industrial radiography testing market share in 2025, sustained by vast hydrocarbon networks and a dense aerospace supply chain concentrated in the Pacific Northwest and Southeast U.S. Regulatory oversight from PHMSA and the FAA compels frequent inspections, while shale-driven midstream growth perpetuates new project demand. Canada's oil sands create unique high-temperature radiography niches, and Mexico's Tier-1 auto cluster integrates portable systems for inline checks on casting lines. Labor shortages are most acute in the region, fueling uptake of automated image review and remote sign-offs.

Asia-Pacific is the fastest expanding region at 9.18% CAGR to 2031. China targets 70 GW nuclear capacity by 2025, each reactor commissioning hundreds of radiographic weld and component checks. India's USD 1.4 trillion National Infrastructure Pipeline calls for pipeline and metro systems that elevate inspection volumes. Japan reinforces inspection rigor across its aging nuclear fleet, while South Korea's global shipyards require high-energy X-ray on thick hull plates. Australia's mining expansion drives portable inspection use in remote, harsh settings. Local manufacturing incentives spur indigenous production of detectors and generators, creating cost-advantaged competition for imports.

Europe registers steady but lower-velocity growth tied to renewables rollouts and automotive electrification initiatives. Germany dominates offshore wind capacity, necessitating field radiography of 100-m blades. France invests in reactor upgrades that demand precise volumetric examination of reactor vessel internals. EU directives regarding chemical waste and worker exposure make digital workflows nearly mandatory, accelerating legacy film decommissioning. The Middle East and Africa combine rising pipeline builds with nascent nuclear ambitions, yet adoption tempo is moderated by limited financing and training infrastructure.

List of Companies Covered in this Report:

Baker Hughes Company Nikon Corporation Fujifilm Holdings Corporation Teledyne Technologies Incorporated Carestream Health, Inc. North Star Imaging, Inc. Comet Holding AG DURR NDT GmbH and Co. KG Rigaku Corporation Hamamatsu Photonics K.K. L3Harris Technologies, Inc. Vidisco Ltd. Carl Zeiss AG Canon Inc. Hitachi, Ltd. VJ Technologies, Inc. Applus Servicios Tecnologicos, S.L.U. Mistras Group, Inc. Bosello High Technology S.r.l. YXLON International GmbH Waygate Technologies GmbH

Additional Benefits:

 The market estimate (ME) sheet in Excel format
3 months of analyst support

Table of Contents:

Scotts International. EU Vat number: PL 6772247784

tel. 0048 603 394 346 e-mail: support@scotts-international.com
www.scotts-international.com

1 INTRODUCTION

1.1 Study Assumptions and Market Definition

1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET LANDSCAPE

4.1 Market Overview

4.2 Market Drivers

4.2.1 Rising demand for volumetric inspection in aerospace and automotive lightweight assemblies

4.2.2 Stringent safety regulations for oil and gas pipeline integrity

4.2.3 Migration from film to digital radiography accelerating inspection throughput

4.2.4 Renewable-energy build-out driving wind-blade and pressure-vessel testing

4.2.5 Inline CT for additive-manufacturing production quality assurance

4.2.6 Micro-focus X-ray for SiC power-electronics packaging in EV factories

4.3 Market Restraints

4.3.1 High cap-ex and TCO of digital flat-panel detector systems

4.3.2 Radiation-safety compliance downtime

4.3.3 Shortage of certified Level-III radiographers

4.3.4 Competition from phased-array UT and terahertz in composites

4.4 Industry Value Chain Analysis

4.5 Regulatory Landscape

4.6 Technological Outlook

4.7 Porter's Five Forces Analysis

4.7.1 Threat of New Entrants

4.7.2 Bargaining Power of Buyers

4.7.3 Bargaining Power of Suppliers

4.7.4 Threat of Substitute Products

4.7.5 Intensity of Competitive Rivalry

4.8 Impact of Macro Trends on the Market Landscape

5 MARKET SIZE AND GROWTH FORECASTS (VALUE)

5.1 By Technology

5.1.1 Film Radiography

5.1.2 Computed Radiography

5.1.3 Direct Radiography

5.1.4 Computed Tomography

5.2 By Imaging Technique

5.2.1 X-ray Radiography

5.2.2 Gamma-ray Radiography

5.3 By Component

5.3.1 Detectors

5.3.2 X-ray Tubes and Generators

5.3.3 Software and Services

5.3.4 Radiation Sources

5.3.5 Imaging Plates/Films and Consumables

5.4 By End-user Industry

5.4.1 Aerospace and Defense

5.4.2 Oil and Gas and Petrochemical

5.4.3 Energy and Power Generation

5.4.4 Automotive and Transportation

5.4.5 Manufacturing and Industrial Machinery

5.4.6 Construction and Infrastructure

5.4.7 Electronics and Semiconductors

5.4.8 Other End-user Industry

5.5 By Geography

5.5.1 North America

5.5.1.1 United States

5.5.1.2 Canada

5.5.1.3 Mexico

5.5.2 South America

5.5.2.1 Brazil

5.5.2.2 Argentina

5.5.2.3 Rest of South America

5.5.3 Europe

5.5.3.1 Germany

5.5.3.2 United Kingdom

5.5.3.3 France

5.5.3.4 Italy

5.5.3.5 Spain

5.5.3.6 Netherlands

5.5.3.7 Rest of Europe

5.5.4 Asia-Pacific

5.5.4.1 China

5.5.4.2 Japan

5.5.4.3 India

5.5.4.4 South Korea

5.5.4.5 Australia

5.5.4.6 Rest of Asia-Pacific

5.5.5 Middle East and Africa

5.5.5.1 Middle East

5.5.5.1.1 Saudi Arabia

5.5.5.1.2 United Arab Emirates

5.5.5.1.3 Turkey

5.5.5.1.4 Rest of Middle East

5.5.5.2 Africa

5.5.5.2.1 South Africa

5.5.5.2.2 Nigeria

5.5.5.2.3 Rest of Africa

6 COMPETITIVE LANDSCAPE

6.1 Market Concentration

Scotts International. EU Vat number: PL 6772247784

tel. 0048 603 394 346 e-mail: support@scotts-international.com

www.scotts-international.com

6.2 Strategic Moves

6.3 Market Share Analysis

6.4 Company Profiles (includes Global level Overview, Market level overview, Core Segments, Financials as available, Strategic Information, Market Rank/Share, Products and Services, Recent Developments)

6.4.1 Baker Hughes Company

6.4.2 Nikon Corporation

6.4.3 Fujifilm Holdings Corporation

6.4.4 Teledyne Technologies Incorporated

6.4.5 Carestream Health, Inc.

6.4.6 North Star Imaging, Inc.

6.4.7 Comet Holding AG

6.4.8 DURR NDT GmbH and Co. KG

6.4.9 Rigaku Corporation

6.4.10 Hamamatsu Photonics K.K.

6.4.11 L3Harris Technologies, Inc.

6.4.12 Vidisco Ltd.

6.4.13 Carl Zeiss AG

6.4.14 Canon Inc.

6.4.15 Hitachi, Ltd.

6.4.16 VJ Technologies, Inc.

6.4.17 Applus Servicios Tecnologicos, S.L.U.

6.4.18 Mistras Group, Inc.

6.4.19 Bosello High Technology S.r.l.

6.4.20 YXLON International GmbH

6.4.21 Waygate Technologies GmbH

7 MARKET OPPORTUNITIES AND FUTURE OUTLOOK

7.1 White-space and Unmet-Need Assessment

Industrial Radiography Testing - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2026 - 2031)

Market Report | 2026-01-16 | 120 pages | Mordor Intelligence

To place an Order with Scotts International:

- Print this form
- Complete the relevant blank fields and sign
- Send as a scanned email to support@scotts-international.com

ORDER FORM:

Select license	License	Price
	Single User License	\$4750.00
	Team License (1-7 Users)	\$5250.00
	Site License	\$6500.00
	Corporate License	\$8750.00
	VAT	
	Total	

*Please circle the relevant license option. For any questions please contact support@scotts-international.com or 0048 603 394 346.

** VAT will be added at 23% for Polish based companies, individuals and EU based companies who are unable to provide a valid EU Vat Numbers.

Email*	<input type="text"/>	Phone*	<input type="text"/>
First Name*	<input type="text"/>	Last Name*	<input type="text"/>
Job title*	<input type="text"/>		
Company Name*	<input type="text"/>	EU Vat / Tax ID / NIP number*	<input type="text"/>
Address*	<input type="text"/>	City*	<input type="text"/>
Zip Code*	<input type="text"/>	Country*	<input type="text"/>
		Date	<input type="text" value="2026-02-10"/>

Signature

Scotts International. EU Vat number: PL 6772247784

tel. 0048 603 394 346 e-mail: support@scotts-international.com

www.scotts-international.com

Scotts International. EU Vat number: PL 6772247784

tel. 0048 603 394 346 e-mail: support@scotts-international.com

www.scotts-international.com