

Semiconductor Ceramic Packaging Materials Market by Material (Alumina, Aluminum Nitride, Silicon Nitride, Silicon Carbide, Beryllium Oxide), Packaging Technology (Through-Hole Packages, Surface Mount Packages - Leaded, Surface Mount Packages - Leadless, Advanced Miniaturized Packages), End-use Industry (Consumer Electronics, Automotive, Healthcare, IT & Telecommunication, Aerospace and Defense), & Region - Global Forecast to 2030

Market Report | 2025-11-03 | 272 pages | MarketsandMarkets

AVAILABLE LICENSES:

- Single User \$4950.00
- Multi User \$6650.00
- Corporate License \$8150.00
- Enterprise Site License \$10000.00

Report description:

The semiconductor ceramic packaging materials market size is projected to grow from USD 1.85 billion in 2025 to USD 2.78 billion by 2030, registering a CAGR of 8.5% during the forecast period.

<https://mnmmimg.marketsandmarkets.com/Images/semiconductor-ceramic-packaging-materials-market-overview.webp>

The demand for semiconductor ceramic packaging materials is increasing due to the growing complexity and miniaturization of modern electronic devices, which require packaging that can reliably manage heat and maintain signal integrity. Rising adoption of high-power and high-frequency applications, such as electric vehicles, industrial automation, and advanced medical devices, is driving the need for materials with superior thermal conductivity and mechanical strength. Additionally, the shift toward high-density multi-chip modules and system-in-package designs requires ceramics that can support precise assembly and long-term reliability. Increasing environmental and regulatory requirements for non-toxic, durable, and stable materials also favor ceramics over traditional packaging. These combined technological, industrial, and regulatory pressures are collectively fueling

Scotts International. EU Vat number: PL 6772247784

tel. 0048 603 394 346 e-mail: support@scotts-international.com

www.scotts-international.com

sustained growth in market demand.

"By material, the alumina segment is anticipated to account for the largest market share during the forecast period"

Alumina accounts for the largest share in the semiconductor ceramic packaging materials market due to its proven reliability, versatility, and cost-effectiveness across a wide range of applications. Its combination of good thermal conductivity, excellent electrical insulation, and high mechanical strength allows it to meet the performance requirements of both low- and high-power semiconductor devices. Alumina is compatible with established manufacturing processes, including co-firing and metallization techniques, enabling scalable production with minimal defects. Its widespread availability and relatively lower raw material cost compared to other materials make it a preferred choice for mass-market applications. Additionally, alumina's stability under thermal cycling and harsh environmental conditions ensures long-term device performance, reinforcing its dominant position in the market.

"By end-use industry, the consumer electronics segment is anticipated to account for the largest market share during the forecast period"

Consumer electronics account for the largest share of the semiconductor ceramic packaging materials market because the sector drives high-volume demand for reliable and durable semiconductor components. Rapid growth in global electronics consumption, including smartphones, laptops, tablets, audio devices, and wearable technology, increases the need for packaging materials that can maintain performance under frequent use and varying environmental conditions. Manufacturers prioritize components that ensure long-term stability and minimize device failure, supporting brand reputation and customer satisfaction. The wide variety of products and continuous technological upgrades in this industry, including advanced displays, processing power, and connectivity features, make consumer electronics the primary driver of ceramic packaging material demand.

"By packaging technology, the surface mount packages - leadless segment is anticipated to account for the largest market share during the forecast period"

Surface mount packages- leadless account for the largest share in the semiconductor ceramic packaging materials market because they allow for more precise and efficient assembly of semiconductor devices compared to traditional through-hole methods. This technology supports higher component density on printed circuit boards, enabling compact designs and improved signal integrity in advanced electronics. It also enhances mechanical stability and reduces the risk of solder joint failures, which is critical for applications in automotive, aerospace, and high-performance computing. Additionally, leadless surface mount technology is compatible with automated manufacturing and inspection processes, improving production speed and consistency. Its ability to support miniaturization, high-frequency operation, and reliable thermal management makes this packaging technology the preferred choice for modern semiconductor applications, driving its growth in the market.

"Asia Pacific is anticipated to account for the largest market share during the forecast period"

Asia Pacific holds the largest share in the semiconductor ceramic packaging materials market because the region is a global hub for semiconductor assembly, testing, and packaging operations. Strong investments in research and development of advanced packaging technologies drive demand for high-performance ceramic materials. The concentration of electronics manufacturing clusters in countries like China, Taiwan, and South Korea enables efficient production and rapid adoption of new packaging solutions. Additionally, the growing presence of international semiconductor companies establishing regional operations and partnerships increases the consumption of ceramic materials. Supportive industrial policies, export-oriented production, and rising domestic demand for advanced electronics further strengthen the region's market dominance.

In-depth interviews were conducted with chief executive officers (CEOs), marketing directors, other innovation and technology directors, and executives from various key organizations operating in the semiconductor ceramic packaging materials market, and information was gathered from secondary research to determine and verify the market size of several segments.

- By Company Type: Tier 1 - 50%, Tier 2 - 30%, and Tier 3 - 20%
- By Designation: Managers- 15%, Directors - 20%, and Others - 65%
- By Region: North America - 30%, Europe - 25%, Asia Pacific - 35%, the Middle East & Africa -5%, and South America- 5%

The semiconductor ceramic packaging materials market comprises major KYOCERA Corporation (Japan), CeramTec GmbH (Germany), CoorsTek (US), Materion Corporation (US), Resonac Holdings Corporation (Japan), NGK INSULATORS, LTD. (Japan), AGC Inc. (Japan), Morgan Advanced Materials (UK), MARUWA Co., Ltd. (Japan), and Tokuyama Corporation (Japan). The study includes an in-depth competitive analysis of these key players in the semiconductor ceramic packaging materials market, with their company profiles, recent developments, and key market strategies.

Research Coverage

This report segments the semiconductor ceramic packaging materials market on the basis of material, packaging technology, end-use industry, and region, and provides estimations for the overall value of the market across various regions. A detailed analysis of key industry players has been conducted to provide insights into their business overviews, products & services, key strategies, and expansions associated with the semiconductor ceramic packaging materials market.

Key Benefits of Buying This Report

This research report is focused on various levels of analysis - industry analysis (industry trends), market ranking analysis of top players, and company profiles, which together provide an overall view of the competitive landscape; emerging and high-growth segments of the semiconductor ceramic packaging materials market; high-growth regions; and market drivers, restraints, opportunities, and challenges.

The report provides insights on the following pointers:

- Analysis of drivers (expansion of automotive electronics and EV power modules boosting ceramic packaging adoption), restraints (high cost of ceramic packaging materials compared to polymer or metal-based packaging), opportunities (regional localization of semiconductor manufacturing encouraging investment), and challenges (limited design flexibility of ceramic materials makes fabricating complex geometries challenging) influencing the growth of semiconductor ceramic packaging materials market.
- Market Penetration: Comprehensive information on the semiconductor ceramic packaging materials offered by top players in the global semiconductor ceramic packaging materials market.
- Product Development/Innovation: Detailed insights on upcoming technologies, expansions, and partnerships in the semiconductor ceramic packaging materials market.
- Market Development: Comprehensive information about lucrative emerging markets, the report analyzes the markets for semiconductor ceramic packaging materials market across regions.
- Market Capacity: Production capacity of the companies is provided wherever available with upcoming capacities for the semiconductor ceramic packaging materials market.
- Competitive Assessment: In-depth assessment of market shares, strategies, products, and manufacturing capabilities of leading players in the semiconductor ceramic packaging materials market.

Table of Contents:

- 1□INTRODUCTION□27
- 1.1□STUDY OBJECTIVES□27
- 1.2□MARKET DEFINITION□27
- 1.3□STUDY SCOPE□28
 - 1.3.1□MARKETS COVERED□28
 - 1.3.2□INCLUSIONS & EXCLUSIONS□28
 - 1.3.3□YEARS CONSIDERED□29
 - 1.3.4□CURRENCY CONSIDERED□29

Scotts International. EU Vat number: PL 6772247784

tel. 0048 603 394 346 e-mail: support@scotts-international.com

www.scotts-international.com

1.3.5 UNITS CONSIDERED	29
1.4 LIMITATIONS	30
1.5 STAKEHOLDERS	30
2 RESEARCH METHODOLOGY	31
2.1 RESEARCH DATA	31
2.1.1 SECONDARY DATA	32
2.1.1.1 Key data from secondary sources	32
2.1.2 PRIMARY DATA	32
2.1.2.1 Key data from primary sources	33
2.1.2.2 Key primary sources	33
2.1.2.3 Key players for primary interviews	33
2.1.2.4 Breakdown of interviews with experts	34
2.1.2.5 Key industry insights	34
2.2 BASE NUMBER CALCULATION	35
2.2.1 SUPPLY-SIDE ANALYSIS	35
2.2.2 DEMAND-SIDE ANALYSIS	35
2.3 GROWTH FORECAST	35
2.3.1 SUPPLY SIDE	35
2.3.2 DEMAND SIDE	36
2.4 MARKET SIZE ESTIMATION	36
2.4.1 BOTTOM-UP APPROACH	37
2.4.2 TOP-DOWN APPROACH	37
2.5 DATA TRIANGULATION	38
2.6 RESEARCH ASSUMPTION	39
2.7 GROWTH FORECAST	39
2.8 RISK ASSESSMENT	40
2.9 FACTOR ANALYSIS	41
3 EXECUTIVE SUMMARY	42
4 PREMIUM INSIGHTS	47
4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN SEMICONDUCTOR CERAMIC PACKAGING MATERIALS MARKET	47
4.2 SEMICONDUCTOR CERAMIC PACKAGING MATERIALS MARKET, BY MATERIAL	48
4.3 SEMICONDUCTOR CERAMIC PACKAGING MATERIALS MARKET, BY PACKAGING TECHNOLOGY	48
4.4 SEMICONDUCTOR CERAMIC PACKAGING MATERIALS MARKET, BY END-USE INDUSTRY	49
4.5 SEMICONDUCTOR CERAMIC PACKAGING MATERIALS MARKET, BY COUNTRY	49
5 MARKET OVERVIEW	50
5.1 INTRODUCTION	50
5.2 MARKET DYNAMICS	50
5.2.1 DRIVERS	51
5.2.1.1 Expansion of automotive electronics and EV power modules	51
5.2.1.2 Growth in 5G infrastructure and RF devices	52
5.2.2 RESTRAINTS	53
5.2.2.1 Higher cost of ceramic packaging materials than polymer or metal-based packaging	53
5.2.3 OPPORTUNITIES	53
5.2.3.1 Regional localization of semiconductor manufacturing	

encouraging investment	53
5.2.3.2 Advanced multilayer ceramic materials for emerging 2.5D/3D semiconductor packaging	54
5.2.4 CHALLENGES	54
5.2.4.1 Difficulty in bonding to dissimilar materials	54
5.2.4.2 Limited design flexibility makes fabricating complex geometries challenging	55
5.3 GENERATIVE AI	55
5.3.1 INTRODUCTION	55
5.4 IMPACT ON SEMICONDUCTOR CERAMIC PACKAGING MATERIALS MARKET	57
6 INDUSTRY TRENDS	58
6.1 INTRODUCTION	58
6.2 TRENDS/DISRUPTIONS IMPACTING CUSTOMER BUSINESS	58
6.3 SUPPLY CHAIN ANALYSIS	59
6.4 IMPACT OF 2025 US TARIFF -SEMICONDUCTOR CERAMIC PACKAGING MATERIALS MARKET	61
6.4.1 INTRODUCTION	61
6.4.2 KEY TARIFF RATES	61
6.4.3 PRICE IMPACT ANALYSIS	62
6.4.4 IMPACT ON REGION	62
6.4.4.1 North America	62
6.4.4.2 Europe	62
6.4.4.3 Asia Pacific	62
6.4.5 IMPACT ON END-USE INDUSTRY	62
6.5 INVESTMENT LANDSCAPE AND FUNDING SCENARIO	63
6.6 PRICING ANALYSIS	64
6.6.1 AVERAGE SELLING PRICE TREND OF SEMICONDUCTOR CERAMIC PACKAGING MATERIALS MARKET, BY REGION, 2021-2024	64
6.6.2 AVERAGE SELLING PRICE TREND OF SEMICONDUCTOR CERAMIC PACKAGING MATERIALS MARKET, BY MATERIAL, 2021-2024	65
6.6.3 AVERAGE SELLING PRICE TREND OF SEMICONDUCTOR CERAMIC PACKAGING MATERIALS, BY KEY PLAYER, 2024	65
6.7 ECOSYSTEM ANALYSIS	66
6.8 TECHNOLOGY ANALYSIS	67
6.8.1 KEY TECHNOLOGIES	67
6.8.2 COMPLEMENTARY TECHNOLOGIES	68
6.8.3 ADJACENT TECHNOLOGIES	69
6.9 PATENT ANALYSIS	70
6.9.1 METHODOLOGY	70
6.9.2 PATENTS GRANTED WORLDWIDE, 2015-2024	70
6.9.2.1 Patent publication trends	70
6.9.3 INSIGHTS	71
6.9.4 LEGAL STATUS OF PATENTS	71
6.9.5 JURISDICTION ANALYSIS	71
6.9.6 TOP APPLICANTS	72
6.9.7 LIST OF MAJOR PATENTS	73
6.10 TRADE ANALYSIS	76
6.10.1 IMPORT SCENARIO (HS CODE 85419000)	76
6.10.2 EXPORT SCENARIO (HS CODE 85419000)	77

6.11	KEY CONFERENCES AND EVENTS, 2026-2027	77
6.12	TARIFF AND REGULATORY LANDSCAPE	78
6.12.1	TARIFF ANALYSIS	78
6.13	STANDARDS AND REGULATORY LANDSCAPE	79
6.13.1	REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS	79
6.13.2	STANDARDS	82
6.14	PORTER'S FIVE FORCES ANALYSIS	83
6.14.1	THREAT OF NEW ENTRANTS	84
6.14.2	THREAT OF SUBSTITUTES	85
6.14.3	BARGAINING POWER OF SUPPLIERS	85
6.14.4	BARGAINING POWER OF BUYERS	85
6.14.5	INTENSITY OF COMPETITIVE RIVALRY	86
6.15	KEY STAKEHOLDERS AND BUYING CRITERIA	86
6.15.1	KEY STAKEHOLDERS IN BUYING PROCESS	87
6.15.2	BUYING CRITERIA	87
?		
6.16	MACROECONOMIC OUTLOOK	88
6.16.1	GDP TRENDS AND FORECASTS OF MAJOR ECONOMIES	89
6.17	CASE STUDY ANALYSIS	89
6.17.1	LOW THERMAL RESISTANCE PACKAGING FOR HIGH POWER ELECTRONICS	89
6.17.2	EFFECTS OF ?ETA-SI3N4 SEEDS ON MICROSTRUCTURE AND PERFORMANCE OF SI3N4 CERAMICS IN SEMICONDUCTOR PACKAGE	91
6.17.3	PREPARATION OF DIAMOND FILM SUBSTRATES ON ALN CERAMIC AND THEIR PERFORMANCE IN LED PACKAGING	92
7	SEMICONDUCTOR CERAMIC PACKAGING MATERIALS MARKET, BY MATERIAL	93
7.1	INTRODUCTION	94
7.2	ALUMINA	96
7.2.1	HIGH-TEMPERATURE PERFORMANCE IN SEMICONDUCTOR DEVICES TO DRIVE DEMAND	96
7.3	ALUMINUM NITRIDE	96
7.3.1	SUPERIOR THERMAL AND ELECTRICAL PROPERTIES TO DRIVE MARKET	96
7.4	SILICON NITRIDE	97
7.4.1	HIGH MECHANICAL STRENGTH AND THERMAL SHOCK RESILIENCE TO DRIVE DEMAND	97
7.5	SILICON CARBIDE	98
7.5.1	MATERIAL ADVANCEMENTS TO DRIVE HIGH DENSITY AND THERMALLY STABLE CHIP PACKAGING	98
7.6	BERYLLIUM OXIDE	98
7.6.1	EFFICIENT HEAT DISSIPATION TO DRIVE NEXT-GENERATION HIGH-POWER PACKAGE DESIGNS	98
7.7	OTHER MATERIALS	99
7.7.1	BORON NITRIDE	99
7.7.2	ZIRCONIA	99
8	SEMICONDUCTOR CERAMIC PACKAGING MATERIALS MARKET, BY PACKAGING TECHNOLOGY	100
8.1	INTRODUCTION	101
8.2	THROUGH-HOLE PACKAGES	103

8.2.1 ENHANCED DEVICE DURABILITY AND THERMAL PERFORMANCE TO DRIVE DEMAND	103
8.3 SURFACE MOUNT PACKAGES - LEADED	104
8.3.1 EFFICIENT ASSEMBLY AND RELIABLE PERFORMANCE TO DRIVE DEMAND	104
8.4 SURFACE MOUNT PACKAGES - LEADLESS	104
8.4.1 SUPERIOR ELECTRICAL PERFORMANCE AND EFFICIENT MANUFACTURING TO DRIVE DEMAND	104
8.5 ADVANCED MINIATURIZED PACKAGES	105
8.5.1 HIGH-PERFORMANCE INTEGRATION AND EFFICIENT CONNECTIVITY TO DRIVE MARKET	105
?	
8.6 OTHER PACKAGING TECHNOLOGIES	105
8.6.1 FLIP-CHIP CERAMIC PACKAGES	105
8.6.2 MULTI-CHIP MODULES	106
9 SEMICONDUCTOR CERAMIC PACKAGING MATERIALS MARKET, BY END-USE INDUSTRY	107
9.1 INTRODUCTION	108
9.2 CONSUMER ELECTRONICS	110
9.2.1 INCREASE IN ADVANCED CERAMIC PACKAGING ADOPTION FOR HIGH-PERFORMANCE, RELIABLE DEVICES	110
9.3 AUTOMOTIVE	110
9.3.1 RISE IN VEHICLE PRODUCTION TO DRIVE MARKET	110
9.4 HEALTHCARE	111
9.4.1 EXPANSION OF HEALTHCARE MARKETS TO DRIVE DEMAND FOR HIGH-PERFORMANCE PACKAGING MATERIALS	111
9.5 IT & TELECOMMUNICATION	112
9.5.1 5G AND DIGITAL INFRASTRUCTURE EXPANSION TO DRIVE DEMAND	112
9.6 AEROSPACE & DEFENSE	112
9.6.1 NEXT-GENERATION AEROSPACE TECHNOLOGIES TO DRIVE HIGH-PERFORMANCE PACKAGING ADOPTION	112
9.7 OTHER END-USE INDUSTRIES	113
9.7.1 RAIL & TRANSPORTATION	113
9.7.2 RENEWABLE ENERGY	113
10 SEMICONDUCTOR CERAMIC PACKAGING MATERIALS MARKET, BY REGION	114
10.1 INTRODUCTION	115
10.2 ASIA PACIFIC	117
10.2.1 CHINA	124
10.2.1.1 Rapid growth of 5G infrastructure and consumer electronics market	124
10.2.2 JAPAN	126
10.2.2.1 Continuous investment in R&D for semiconductor packaging materials	126
10.2.3 INDIA	128
10.2.3.1 Government incentives through India Semiconductor Mission	128
10.2.4 SOUTH KOREA	130
10.2.4.1 Presence of major semiconductor manufacturers like Samsung and SK hynix	130
10.2.5 TAIWAN	132
10.2.5.1 Leadership in semiconductor manufacturing	132

10.2.6 REST OF ASIA PACIFIC	134
10.3 NORTH AMERICA	136
10.3.1 US	142
10.3.1.1 Strong semiconductor, aerospace, and defense industries	142
10.3.2 CANADA	144
10.3.2.1 Expansion of technology infrastructure	144
10.3.3 MEXICO	146
10.3.3.1 Emergence as manufacturing hub to drive demand	146
10.4 EUROPE	148
10.4.1 GERMANY	155
10.4.1.1 Growth in automotive manufacturing and ADAS integration	155
10.4.2 ITALY	157
10.4.2.1 Industrial automation and IoT electronics growth	157
10.4.3 FRANCE	159
10.4.3.1 High investment in medical electronics demanding hermetic ceramic packages	159
10.4.4 UK	161
10.4.4.1 Government initiatives for semiconductor sovereignty	161
10.4.5 SPAIN	163
10.4.5.1 Support for local semiconductor and electronics production	163
10.4.6 REST OF EUROPE	165
10.5 MIDDLE EAST & AFRICA	167
10.5.1 GCC COUNTRIES	167
10.5.1.1 Saudi Arabia	173
10.5.1.1.1 Saudi Arabia's Vision 2030 spurs investment	173
10.5.1.2 UAE	175
10.5.1.2.1 National Strategy for Advanced Industries (Operation 300bn)	175
10.5.1.3 Rest of GCC countries	177
10.5.1.4 South Africa	179
10.5.1.4.1 Expansion in automotive component manufacturing	179
10.5.1.5 Rest of Middle East & Africa	181
10.6 SOUTH AMERICA	183
10.6.1 ARGENTINA	189
10.6.1.1 Industrial modernization and import substitution	189
10.6.2 BRAZIL	191
10.6.2.1 Growing industrial and consumer electronics production	191
10.6.3 REST OF SOUTH AMERICA	193
11 COMPETITIVE LANDSCAPE	195
11.1 INTRODUCTION	195
11.2 KEY PLAYER STRATEGIES/RIGHT TO WIN	195
11.3 MARKET SHARE ANALYSIS, 2024	196
11.4 REVENUE ANALYSIS, 2021-2024	199
11.5 COMPANY EVALUATION MATRIX: KEY PLAYERS, 2024	199
11.5.1 STARS	199
11.5.2 EMERGING LEADERS	200
11.5.3 PERVASIVE PLAYERS	200

11.5.4 □ PARTICIPANTS □ 200
11.5.5 □ COMPANY FOOTPRINT: KEY PLAYERS, 2024 □ 201
11.5.5.1 □ Company footprint □ 201
11.5.5.2 □ Region footprint □ 202
11.5.5.3 □ Material footprint □ 202
11.5.5.4 □ Packaging technology footprint □ 203
11.5.5.5 □ End-use industry footprint □ 204
11.6 □ COMPANY EVALUATION MATRIX: STARTUPS/SMES, 2024 □ 205
11.6.1 □ PROGRESSIVE COMPANIES □ 205
11.6.2 □ RESPONSIVE COMPANIES □ 205
11.6.3 □ DYNAMIC COMPANIES □ 205
11.6.4 □ STARTING BLOCKS □ 205
11.6.5 □ COMPETITIVE BENCHMARKING □ 207
11.6.5.1 □ Detailed list of key startups/SMEs □ 207
11.6.5.2 □ Competitive benchmarking of key startups/SMEs □ 208
11.7 □ BRAND/PRODUCT COMPARISON □ 210
11.8 □ COMPANY VALUATION AND FINANCIAL METRICS □ 211
11.9 □ COMPETITIVE SCENARIO AND TRENDS □ 212
11.9.1 □ DEALS □ 212
11.9.2 □ EXPANSIONS □ 212
11.9.3 □ OTHER DEVELOPMENTS □ 214
12 □ COMPANY PROFILES □ 215
12.1 □ KEY PLAYERS □ 215
12.1.1 □ KYOCERA CORPORATION □ 215
12.1.1.1 □ Business overview □ 215
12.1.1.2 □ Products/Solutions/Services offered □ 216
12.1.1.3 □ Recent developments □ 218
12.1.1.3.1 □ Deals □ 218
12.1.1.3.2 □ Expansions □ 218
12.1.1.4 □ MnM view □ 219
12.1.1.4.1 □ Key strengths □ 219
12.1.1.4.2 □ Strategic choices □ 219
12.1.1.4.3 □ Weaknesses and competitive threats □ 220
12.1.2 □ CERAMTEC GMBH □ 221
12.1.2.1 □ Business overview □ 221
12.1.2.2 □ Products/Solutions/Services offered □ 221
12.1.2.3 □ MnM view □ 222
12.1.2.3.1 □ Key strengths □ 222
12.1.2.3.2 □ Strategic choices □ 223
12.1.2.3.3 □ Weaknesses and competitive threats □ 223
12.1.3 □ COORSTEK □ 224
12.1.3.1 □ Business overview □ 224
12.1.3.2 □ Products/Solutions/Services offered □ 224
12.1.3.3 □ Recent developments □ 225
12.1.3.3.1 □ Others □ 225
12.1.3.4 □ MnM view □ 225
12.1.3.4.1 □ Key strengths □ 225

12.1.3.4.2 Strategic choices 226
12.1.3.4.3 Weaknesses and competitive threats 226
12.1.4 MORGAN ADVANCED MATERIALS 227
12.1.4.1 Business overview 227
12.1.4.2 Products/Solutions/Services offered 228
12.1.4.3 Recent developments 229
12.1.4.3.1 Others 229
12.1.4.4 MnM view 230
12.1.4.4.1 Key strengths 230
12.1.4.4.2 Strategic choices 230
12.1.4.4.3 Weaknesses and competitive threats 230
12.1.5 NGK INSULATORS, LTD. 231
12.1.5.1 Business overview 231
12.1.5.2 Products/Solutions/Services offered 232
12.1.5.3 MnM view 233
12.1.5.3.1 Key strengths 233
12.1.5.3.2 Strategic choices 233
12.1.5.3.3 Weaknesses and competitive threats 233
12.1.6 MARUWA CO., LTD. 234
12.1.6.1 Business overview 234
12.1.6.2 Products/Solutions/Services offered 235
12.1.6.3 MnM view 235
12.1.6.3.1 Key strengths 235
12.1.6.3.2 Strategic choices 235
12.1.6.3.3 Weaknesses and competitive threats 235
12.1.7 AGC INC. 236
12.1.7.1 Business overview 236
12.1.7.2 Products/Solutions/Services offered 237
12.1.7.3 Recent developments 238
12.1.7.3.1 Others 238
12.1.7.4 MnM view 238
12.1.7.4.1 Key strengths 238
12.1.7.4.2 Strategic choices 238
12.1.7.4.3 Weaknesses and competitive threats 239
?
12.1.8 MATERION CORPORATION 240
12.1.8.1 Business overview 240
12.1.8.2 Products/Solutions/Services offered 241
12.1.8.3 MnM view 242
12.1.8.3.1 Key strengths 242
12.1.8.3.2 Strategic choices 242
12.1.8.3.3 Weaknesses and competitive threats 242
12.1.9 TOKUYAMA CORPORATION 243
12.1.9.1 Business overview 243
12.1.9.2 Products/Solutions/Services offered 244
12.1.9.3 Recent developments 244
12.1.9.3.1 Expansions 244

12.1.9.4 MnM view	245
12.1.9.4.1 Key strengths	245
12.1.9.4.2 Strategic choices	245
12.1.9.4.3 Weaknesses and competitive threats	245
12.1.10 FERROTEC CORPORATION	246
12.1.10.1 Business overview	246
12.1.10.2 Products/Solutions/Services offered	247
12.1.10.3 Recent developments	248
12.1.10.3.1 Expansions	248
12.1.10.4 MnM view	248
12.1.10.4.1 Key strengths	248
12.1.10.4.2 Strategic choices	248
12.1.10.4.3 Weaknesses and competitive threats	249
12.2 OTHER PLAYERS	250
12.2.1 GREAT CERAMIC	250
12.2.2 ADTECH CERAMICS	251
12.2.3 XIAMEN MASCERA TECHNOLOGY CO., LTD.	252
12.2.4 ORTECH, INC.	253
12.2.5 ADVANCED CERAMIC MATERIALS	254
12.2.6 STC MATERIAL SOLUTIONS	255
12.2.7 NISHIMURA ADVANCED CERAMICS CO., LTD.	256
12.2.8 JAPAN FINE CERAMICS CO., LTD.	257
12.2.9 WUXI SPECIAL CERAMIC ELECTRICAL CO., LTD.	258
12.2.10 JINGHUI INDUSTRY LTD.	259
12.2.11 FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO., LTD.	260
12.2.12 HEBEI SUOYI NEW MATERIAL TECHNOLOGY CO., LTD.	261
12.2.13 NTK CERATEC CO., LTD.	262
12.2.14 XIAMEN INNOVACERA ADVANCED MATERIALS CO., LTD.	263
12.2.15 XIAMEN FINE CERAMICS TECHNOLOGY CO., LTD.	264
13 APPENDIX	265
13.1 DISCUSSION GUIDE	265
13.2 KNOWLEDGESTORE: MARKETSANDMARKETS' SUBSCRIPTION PORTAL	268
13.3 CUSTOMIZATION OPTIONS	270
13.4 RELATED REPORTS	270
13.5 AUTHOR DETAILS	271

Semiconductor Ceramic Packaging Materials Market by Material (Alumina, Aluminum Nitride, Silicon Nitride, Silicon Carbide, Beryllium Oxide), Packaging Technology (Through-Hole Packages, Surface Mount Packages - Leaded, Surface Mount Packages - Leadless, Advanced Miniaturized Packages), End-use Industry (Consumer Electronics, Automotive, Healthcare, IT & Telecommunication, Aerospace and Defense), & Region - Global Forecast to 2030

Market Report | 2025-11-03 | 272 pages | MarketsandMarkets

To place an Order with Scotts International:

- Print this form
- Complete the relevant blank fields and sign
- Send as a scanned email to support@scotts-international.com

ORDER FORM:

Select license	License	Price
	Single User	\$4950.00
	Multi User	\$6650.00
	Corporate License	\$8150.00
	Enterprise Site License	\$10000.00
		VAT
		Total

*Please circle the relevant license option. For any questions please contact support@scotts-international.com or 0048 603 394 346.

** VAT will be added at 23% for Polish based companies, individuals and EU based companies who are unable to provide a valid EU Vat Numbers.

Email*

Phone*

Scotts International. EU Vat number: PL 6772247784

tel. 0048 603 394 346 e-mail: support@scotts-international.com

www.scotts-international.com

First Name*	<input type="text"/>	Last Name*	<input type="text"/>
Job title*	<input type="text"/>	EU Vat / Tax ID / NIP number*	
Company Name*	<input type="text"/>	City*	<input type="text"/>
Address*	<input type="text"/>	Country*	<input type="text"/>
Zip Code*	<input type="text"/>	Date	<input type="text" value="2026-02-09"/>
		Signature	<input type="text"/>

Scotts International. EU Vat number: PL 6772247784

tel. 0048 603 394 346 e-mail: support@scotts-international.com

www.scotts-international.com