

Artificial Intelligence in Manufacturing Market by Processor (MPUs, GPUs, FPGAs, ASICs), Software (On-premises, Cloud), Technology (Machine Learning, NLP, Context-aware Computing, Computer Vision, Generative AI), Application - Global Forecast to 2030

Market Report | 2025-08-21 | 335 pages | MarketsandMarkets

AVAILABLE LICENSES:

- Single User \$4950.00
- Multi User \$6650.00
- Corporate License \$8150.00
- Enterprise Site License \$10000.00

Report description:

With a CAGR of 35.3%, the global AI in manufacturing market is anticipated to rise from USD 34.18 billion in 2025 to USD 155.04 billion by 2030. This robust growth is being driven by the rapid adoption of AI technologies to streamline production workflows, enhance real-time decision making, and support predictive maintenance across diverse manufacturing operations. As manufacturers strive for greater agility, cost efficiency, and quality assurance, AI solutions are becoming instrumental in unlocking new levels of operational intelligence and productivity. Industries such as automotive, electronics, aerospace, and consumer goods are leveraging machine learning, computer vision, and natural language processing to optimize production scheduling, reduce downtime, and detect anomalies early in the process. The use of AI-enabled robots, digital twins, and intelligent quality control systems allows manufacturers to scale output with precision and adaptability. Additionally, AI integration with industrial IoT platforms and cloud-based data analytics accelerates the transition to smart factories by enabling connected, data-driven ecosystems. With growing emphasis on sustainability, customization, and global competitiveness, AI is set to play a transformative role in shaping next-generation manufacturing paradigms. As the demand for intelligent automation and continuous process innovation intensifies, the AI in manufacturing market is poised for sustained expansion across all regions and industry verticals.

<https://www.marketsandmarkets.com/Images/artificial-intelligence-manufacturing-market.webp>

"By Application, Predictive Maintenance Segment Held the Largest Market Share in 2024."

Scotts International. EU Vat number: PL 6772247784

tel. 0048 603 394 346 e-mail: support@scotts-international.com

www.scotts-international.com

In 2024, the predictive maintenance segment emerged as the leading application in the AI in manufacturing market, driven by the growing emphasis on minimizing equipment failures, reducing operational downtime, and optimizing asset performance. Manufacturers across industries increasingly adopted AI-powered predictive maintenance systems to analyze sensor data, detect anomalies, and forecast equipment failures before they occurred. This approach enabled timely and targeted interventions, helping companies avoid costly disruptions and improve overall production efficiency. Key sectors such as automotive, heavy machinery, energy & power, and semiconductor & electronics manufacturing prioritized predictive maintenance, particularly in high-volume and capital-intensive operations where unplanned outages could result in significant losses. AI algorithms, integrated with IoT and cloud platforms, enabled real-time condition monitoring and intelligent diagnostics, offering a clear advantage over traditional reactive or time-based maintenance models. The widespread use of AI-driven insights to anticipate failures, optimize maintenance schedules, and reduce spare part wastage contributed significantly to the segment's dominance. Additionally, the return on investment from predictive maintenance through improved equipment uptime, extended asset life, and reduced labor costs made it a strategic priority for manufacturers. As factories continued to evolve toward smarter, data-centric operations, predictive maintenance firmly held its position as the most impactful AI application in the manufacturing sector in 2024.

"By Technology, the Machine Learning Segment Held the Largest Market Share."

In 2024, the machine learning segment accounted for the largest share of the AI in manufacturing market, reflecting its central role in enabling data-driven decision making, process optimization, and adaptive automation across the industry. Manufacturers increasingly relied on machine learning algorithms to analyze large volumes of operational data generated by sensors, machines, and enterprise systems, uncovering patterns and trends that traditional methods could not detect. This allowed companies to enhance production efficiency, improve quality control, and respond swiftly to changing market demands. Industries such as automotive, electronics, and metals & heavy machinery manufacturing have adopted machine learning to drive a range of applications, from demand forecasting and predictive maintenance to anomaly detection and process optimization. The technology's ability to continuously learn and refine models based on real-time data made it especially valuable in dynamic environments with complex operations and high variability. The integration of machine learning with industrial IoT platforms, cloud computing, and edge devices significantly expanded its use across both discrete and process manufacturing. The ability to automate decision-making, reduce human error, and uncover hidden inefficiencies reinforced machine learning's dominance as a foundational AI technology. As manufacturers pursued greater agility, scalability, and competitiveness, machine learning emerged as the most widely implemented and impactful technology within the AI in manufacturing landscape.

"By Region, Europe Recorded Significant Growth in the AI in Manufacturing Market During the Forecast Period."

Europe is expected to witness significant growth in the AI in manufacturing market, supported by a strong focus on industrial modernization, digital innovation, and automation-led competitiveness. Manufacturers will continue to embrace AI technologies to improve productivity, reduce operational inefficiencies, and meet evolving regulatory and sustainability standards.

Government-led initiatives across various European nations have played a significant role in accelerating AI integration within the manufacturing sector. Investments in research and development, along with supportive policies for smart factory development, have created a favorable environment for AI adoption.

Additionally, the presence of a highly skilled workforce, advanced industrial infrastructure, and well-established digital ecosystems has enabled faster deployment of AI solutions across the region. European manufacturers are increasingly leveraging AI to enhance production intelligence, implement real-time monitoring, and support autonomous decision-making. The emphasis on quality, precision, and traceability has further driven the demand for AI technologies that enable continuous improvement and adaptive control. As the region balances the goals of industrial innovation and environmental responsibility, AI adoption is expected to remain a key enabler of its manufacturing transformation, reinforcing Europe's position as a major contributor to the global AI in manufacturing market.

Breakdown of primaries

A variety of executives from key organizations operating in the AI in manufacturing market, including CEOs, marketing directors,

and innovation and technology directors, were interviewed in depth.□

-□By Company Type: Tier 1 - 45%, Tier 2 - 35%, and Tier 3 - 20%

-□By Designation: Directors - 45%, C-level - 30%, and Others - 25%

-□By Region: North America - 45%, Europe - 25%, Asia Pacific - 20%, and RoW - 10%

Note: Other designations include sales and product managers and project engineers. The three tiers of the companies are defined based on their total revenue in 2024: Tier 1 - revenue ≥ USD 1 billion; Tier 2 - revenue USD 100 million-USD 1 billion; and Tier 3 revenue < USD 100 million.

Major players profiled in this report are as follows:

Siemens (Germany), NVIDIA Corporation (US), IBM (US), Intel Corporation (US), GE Vernova (US), Google (US), Micron Technology, Inc (US), Microsoft (US), Amazon Web Services, Inc (US), Rockwell Automation (US), ABB (Switzerland), Honeywell International Inc. (US), Cisco Systems, Inc. (US), Hewlett Packard Enterprise Development LP (US), SAP SE (Germany), Mitsubishi Electric Corporation (Japan), Oracle (US), Dassault Systemes (France), Sight Machine (US), Progress Software Corporation (US), Aquant (US), Bright Machines, Inc. (US), Avathon, Inc. (US), and Zebra Technologies Corp. (US).

The study provides a detailed competitive analysis of these key players in the AI in manufacturing market, presenting their company profiles, most recent developments, and key market strategies.

Study Coverage

In this report, the AI in manufacturing market has been segmented based on offering, technology, application, industry, and region. The offering segment includes hardware, software, & services. The technology segment comprises machine learning, natural language processing, context-aware computing, computer vision, and generative AI. The application segment comprises inventory optimization, predictive maintenance & machinery inspection, production planning, field services, reclamation, quality control, cybersecurity, and industrial robots. The industry segment comprises semiconductor & electronics, energy & power, pharmaceuticals, automotive, metals & heavy machinery, food & beverages, and other industries. The market has been segmented into four regions ? North America, Asia Pacific, Europe, and Rest of the World (RoW).

Reasons to buy the report

The report will help the leaders/new entrants in this market with information on the closest approximations of the revenue numbers for the overall market and the sub-segments. It will also help stakeholders understand the competitive landscape and gain more insights to better position their businesses and plan suitable go-to-market strategies. The report also helps stakeholders understand the AI in manufacturing market's pulse and provides information on key market drivers, restraints, challenges, and opportunities.

Key Benefits of Buying the Report

?□Analysis of key drivers (The proliferation of industrial IoT and connected devices is enabling seamless integration of AI across factory ecosystems. Data-driven decision making and process intelligence are becoming central to modern manufacturing strategies, allowing companies to uncover inefficiencies, optimize production schedules, and reduce variability through AI-powered insights. Enhanced human-machine collaboration, or augmented intelligence, is improving shop floor productivity by empowering workers with AI-assisted tools and systems), restraints (Data quality and availability challenges continue to limit the full potential of AI in manufacturing. The complexity in scaling AI from pilot projects to full-scale production environments presents a significant hurdle), opportunities (Increasing focus on remote operations is boosting the use of AI for real-time optimization and coordination across multiple manufacturing sites. Growing demand for personalized products is driving AI adoption to enable flexible, small-batch production tailored to individual customer needs), and challenges (Difficulty in managing real-time AI decision

feedback loops limits responsiveness and disrupts tightly synchronized production workflows. Frequent changes in materials, processes, or demand patterns challenge the ability to keep AI models updated, reducing their accuracy and long-term effectiveness in dynamic manufacturing environments) influencing the growth of the AI in manufacturing market is available in the report.

-□Product Development/Innovation: Detailed insights on upcoming technologies, research and development activities, new product launches in the AI in manufacturing market are available.

-□Market Development: Comprehensive information about lucrative markets - the report analyses the AI in manufacturing market across regions.

-□Market Diversification: Exhaustive information about new products/services, untapped geographies, recent developments, and investments in the AI in manufacturing market.

-□Competitive Assessment: In-depth assessment of market shares, growth strategies, and service offerings of leading players such as NVIDIA Corporation (US), IBM (US), Siemens (Germany), Intel Corporation (US), Amazon Web Services, Inc. (US), and others.

Table of Contents:

1	INTRODUCTION	31
1.1	STUDY OBJECTIVES	31
1.2	MARKET DEFINITION	31
1.3	STUDY SCOPE	32
1.3.1	MARKETS COVERED AND REGIONAL SCOPE	32
1.3.2	INCLUSIONS AND EXCLUSIONS	33
1.3.3	YEARS CONSIDERED	33
1.4	CURRENCY CONSIDERED	34
1.5	STAKEHOLDERS	34
1.6	SUMMARY OF CHANGES	35
2	RESEARCH METHODOLOGY	36
2.1	RESEARCH DATA	36
2.1.1	SECONDARY AND PRIMARY RESEARCH	37
2.1.2	SECONDARY DATA	39
2.1.2.1	List of secondary sources	39
2.1.2.2	Key data from secondary sources	40
2.1.3	PRIMARY DATA	40
2.1.3.1	List of participants in primary interviews	41
2.1.3.2	Key data from primary sources	41
2.1.3.3	Key industry insights	42
2.1.3.4	Breakdown of primaries	42
2.2	MARKET SIZE ESTIMATION	43
2.2.1	BOTTOM-UP APPROACH	43
2.2.1.1	Approach to estimate market size using bottom-up analysis (demand side)	43
2.2.2	TOP-DOWN APPROACH	44
2.2.2.1	Approach to estimate market size using top-down analysis (supply side)	44
2.3	DATA TRIANGULATION	45

2.4 RESEARCH ASSUMPTIONS	47
2.5 RESEARCH LIMITATIONS	47
2.6 RISK ASSESSMENT	48
3 EXECUTIVE SUMMARY	49
4 PREMIUM INSIGHTS	54
4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN ARTIFICIAL INTELLIGENCE IN MANUFACTURING MARKET	54
4.2 ARTIFICIAL INTELLIGENCE IN MANUFACTURING MARKET, BY OFFERING	54
4.3 ARTIFICIAL INTELLIGENCE IN MANUFACTURING MARKET, BY TECHNOLOGY	55
4.4 ARTIFICIAL INTELLIGENCE IN MANUFACTURING MARKET, BY INDUSTRY	55
4.5 ARTIFICIAL INTELLIGENCE IN MANUFACTURING MARKET, BY APPLICATION	56
4.6 ARTIFICIAL INTELLIGENCE IN MANUFACTURING MARKET, BY COUNTRY	56
5 MARKET OVERVIEW	57
5.1 INTRODUCTION	57
5.2 MARKET DYNAMICS	57
5.2.1 DRIVERS	58
5.2.1.1 Increasing adoption of IIoT and connected devices across manufacturing plants	58
5.2.1.2 Growing inclination toward AI-enabled decision-making in manufacturing	59
5.2.1.3 Growing role of augmented intelligence in enhancing workforce productivity	59
5.2.2 RESTRAINTS	60
5.2.2.1 Poor data integrity and data availability gaps in legacy systems	60
5.2.2.2 Barriers to enterprise-wide AI deployment in manufacturing	61
5.2.3 OPPORTUNITIES	61
5.2.3.1 Emerging trend of managing global plants remotely with AI	61
5.2.3.2 Shifting focus from mass production to smart customization	62
5.2.4 CHALLENGES	63
5.2.4.1 Complexities in aligning AI output with dynamic manufacturing environments	63
5.2.4.2 Sustaining AI accuracy in dynamic production environments	63
5.3 VALUE CHAIN ANALYSIS	64
5.4 ECOSYSTEM ANALYSIS	67
5.5 TRENDS/DISRUPTIONS IMPACTING CUSTOMER BUSINESS	69
5.6 PORTER'S FIVE FORCES ANALYSIS	70
5.6.1 BARGAINING POWER OF SUPPLIERS	71
5.6.2 BARGAINING POWER OF BUYERS	71
5.6.3 THREAT OF NEW ENTRANTS	72
5.6.4 THREAT OF SUBSTITUTES	72
5.6.5 INTENSITY OF COMPETITIVE RIVALRY	72
5.7 KEY STAKEHOLDERS AND BUYING CRITERIA	73
5.7.1 KEY STAKEHOLDERS IN BUYING PROCESS	73
5.7.2 BUYING CRITERIA	74
5.8 CASE STUDY ANALYSIS	75
5.8.1 EASTMAN CHEMICAL COMPANY TRANSFORMS EQUIPMENT MONITORING WITH AI-DRIVEN RELIABILITY PROGRAM OFFERED BY GE VEROVA	75
5.8.2 HARTING TECHNOLOGY GROUP ACCELERATES CONNECTOR DESIGN WITH AI-POWERED ENGINEERING FROM MICROSOFT AND SIEMENS	76

5.8.3 RENISHAW PLC IMPROVES PRECISION AND REDUCES SCRAP USING NX CAM SOFTWARE OF SIEMENS	76
5.8.4 MITSUBISHI MOTORS CORPORATION TRANSFORMS OPERATIONS WITH IBM FOR MORE EFFICIENT AND AGILE FUTURE	77
5.8.5 SHELL ACHIEVES OPERATIONAL EXCELLENCE AND SCALABILITY IN PREDICTIVE MAINTENANCE WITH AI SOLUTIONS OFFERED BY	
MICROSOFT AND C3.AI	78
5.9 TECHNOLOGY ANALYSIS	78
5.9.1 KEY TECHNOLOGIES	78
5.9.1.1 Reinforcement learning	78
5.9.1.2 Augmented reality, virtual reality, and mixed reality	79
5.9.2 COMPLEMENTARY TECHNOLOGIES	79
5.9.2.1 Internet of Things (IoT)	79
5.9.2.2 Edge computing	80
5.9.3 ADJACENT TECHNOLOGIES	80
5.9.3.1 Additive manufacturing	80
5.9.3.2 Digital twin	80
5.10 PRICING ANALYSIS	81
5.10.1 AVERAGE SELLING PRICE OF PROCESSORS OFFERED BY KEY PLAYERS, BY TYPE, 2024	81
5.10.2 PRICING RANGE OF PROCESSORS OFFERED BY KEY PLAYERS, BY TYPE, 2024	82
5.10.3 AVERAGE SELLING PRICE TREND OF GPU, BY REGION, 2021-2024	82
5.10.4 AVERAGE SELLING PRICE TREND OF FPGA, BY REGION, 2021-2024	83
5.11 INVESTMENT AND FUNDING SCENARIO	84
5.12 TRADE ANALYSIS	84
5.12.1 IMPORT SCENARIO (HS CODE 8471)	85
5.12.2 EXPORT SCENARIO (HS CODE 8471)	86
5.13 PATENT ANALYSIS	87
5.14 KEY CONFERENCES AND EVENTS, 2025-2026	90
5.15 REGULATORY LANDSCAPE	91
5.15.1 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS	91
5.16 IMPACT OF 2025 US TARIFF - OVERVIEW	92
5.16.1 INTRODUCTION	92
5.16.2 KEY TARIFF RATES	93
5.16.3 PRICE IMPACT ANALYSIS	93
5.16.4 IMPACT ON COUNTRIES/REGIONS	94
5.16.4.1 US	94
5.16.4.2 Europe	95
5.16.4.3 Asia Pacific	96
5.16.5 IMPACT ON INDUSTRIES	96
5.16.5.1 Semiconductor & electronics	96
5.16.5.2 Automotive	97
5.17 STRATEGIC ROADMAP FOR AI ADOPTION IN MANUFACTURING (2024-2030)	97
?	
5.18 EMERGING REGIONAL HOTSPOTS	99
5.19 FUTURE OF AI IN MANUFACTURING	101
5.19.1 GENERATIVE AI AND SIMULATION-DRIVEN DESIGN	101

5.19.2 AUTONOMOUS AND COLLABORATIVE ROBOTICS	101
5.19.3 DIGITAL TWINS AND AI-DRIVEN FACTORY PLANNING	102
5.19.4 AI-DRIVEN SUSTAINABILITY AND ENERGY EFFICIENCY	102
5.19.5 SCALING AI ACROSS MANUFACTURING ECOSYSTEM	102
6 ARTIFICIAL INTELLIGENCE IN MANUFACTURING MARKET, BY OFFERING	103
6.1 INTRODUCTION	104
6.2 HARDWARE	106
6.2.1 PROCESSORS	107
6.2.1.1 Rising need for faster and more energy-efficient computation to boost demand	107
6.2.1.2 Microprocessor units (MPUs)	107
6.2.1.3 Graphics processing units (GPUs)	108
6.2.1.4 Field programmable gate arrays (FPGAs)	108
6.2.1.5 Application-specific integrated circuits (ASICs)	108
6.2.2 MEMORY DEVICES	109
6.2.2.1 Increasing significance of real-time decision-making in automated manufacturing processes to accelerate demand	109
6.2.3 NETWORK DEVICES	109
6.2.3.1 Elevating demand for Ethernet adaptors and interconnects to create opportunities	109
6.3 SOFTWARE	110
6.3.1 AI SOLUTIONS	111
6.3.1.1 Rising focus on enhancing efficiency, quality, and flexibility on factory floor to drive segmental growth	111
6.3.1.2 On-premises	111
6.3.1.2.1 Greater flexibility and control to fuel segmental growth	111
6.3.1.3 Cloud-based	112
6.3.1.3.1 Lower operational costs, hassle-free deployment, and high scalability to foster segmental growth	112
6.3.2 AI PLATFORMS	112
6.3.2.1 Machine learning framework	113
6.3.2.1.1 Emphasis on enhancing distributed training for large-scale manufacturing applications to spike demand	113
6.3.2.2 Application programming interface	113
6.3.2.2.1 Ability to enable seamless communication between AI-driven analytics tools and factory floor machinery to spur demand	113
6.4 SERVICES	114
6.4.1 DEPLOYMENT & INTEGRATION	115
6.4.1.1 Escalating adoption of AI technology by manufacturing firms to drive market	115
6.4.2 SUPPORT & MAINTENANCE	115
6.4.2.1 Rising focus on maximizing uptime and ensuring peak performance to fuel market growth	115
7 ARTIFICIAL INTELLIGENCE IN MANUFACTURING MARKET, BY TECHNOLOGY	116
7.1 INTRODUCTION	117
7.2 MACHINE LEARNING	118
7.2.1 DEEP LEARNING	120
7.2.1.1 Rising adoption of IIoT, machine vision, and robotics across industries to create opportunities	120

7.2.2 □ SUPERVISED LEARNING □ 121	
7.2.2.1 □ Growing importance of quality assurance, inventory planning, and predictive maintenance to spike demand □ 121	
7.2.3 □ REINFORCEMENT LEARNING □ 121	
7.2.3.1 □ Potential to automatically determine context-specific ideal behavior to maximize performance to drive segmental growth □ 121	
7.2.4 □ UNSUPERVISED LEARNING □ 122	
7.2.4.1 □ Ability to detect real-time anomalies in complex, multi-step manufacturing environments to boost demand □ 122	
7.2.5 □ OTHERS □ 122	
7.3 □ NATURAL LANGUAGE PROCESSING □ 122	
7.3.1 □ POTENTIAL TO TRANSFORM DOMAIN-SPECIFIC TEXT INTO ACTIONABLE KNOWLEDGE TO SPUR DEMAND □ 122	
7.4 □ CONTEXT-AWARE COMPUTING □ 124	
7.4.1 □ COMPETENCE TO EMPOWER NEXT-GENERATION SMART DEVICES TO ACCELERATE ADOPTION □ 124	
7.5 □ COMPUTER VISION □ 126	
7.5.1 □ ABILITY TO ENHANCE INDUSTRIAL EFFICIENCY TO FUEL SEGMENTAL GROWTH □ 126	
7.6 □ GENERATIVE AI □ 127	
7.6.1 □ SCALING DEPLOYMENT TO ENHANCE PRODUCTION EFFICIENCY TO FUEL MARKET GROWTH □ 127	
8 □ ARTIFICIAL INTELLIGENCE IN MANUFACTURING MARKET, BY APPLICATION □ 129	
8.1 □ INTRODUCTION □ 130	
8.2 □ INVENTORY OPTIMIZATION □ 132	
8.2.1 □ GROWING FOCUS ON ACHIEVING COST EFFICIENCY AND SUPPLY CHAIN RESILIENCE TO STIMULATE DEMAND □ 132	
8.3 □ PREDICTIVE MAINTENANCE & MACHINERY INSPECTION □ 133	
8.3.1 □ POTENTIAL TO MAXIMIZE EQUIPMENT UPTIME AND REDUCE OPERATIONAL COSTS TO DRIVE ADOPTION □ 133	
8.4 □ PRODUCTION PLANNING □ 134	
8.4.1 □ PRESSING NEED TO STAY COMPETITIVE IN DYNAMIC GLOBAL MARKET TO FUEL IMPLEMENTATION □ 134	
8.5 □ FIELD SERVICES □ 135	
8.5.1 □ NECESSITY TO OPTIMIZE WORKFORCE DEPLOYMENT AND TRACK ASSET HEALTH TO FUEL SEGMENTAL GROWTH □ 135	
8.6 □ RECLAMATION □ 136	
8.6.1 □ STRINGENT QUALITY STANDARDS AND SIGNIFICANT FOCUS ON WASTE REDUCTION TO DRIVE MARKET □ 136	
8.7 □ QUALITY CONTROL □ 137	
8.7.1 □ INCREASING USE OF AI-POWERED QUALITY CONTROL SYSTEMS BY PHARMACEUTICAL AND FOOD & BEVERAGE COMPANIES TO ACCELERATE MARKET GROWTH □ 137	
8.8 □ CYBERSECURITY □ 139	
8.8.1 □ CAPABILITY TO SECURE DIGITAL ASSETS AND ENSURE UNINTERRUPTED OPERATIONS TO FOSTER SEGMENTAL GROWTH □ 139	
8.9 □ INDUSTRIAL ROBOTS □ 140	
8.9.1 □ SEAMLESS INTEGRATION OF AI INTO INDUSTRIAL ROBOTS TO DRIVE MARKET □ 140	
9 □ ARTIFICIAL INTELLIGENCE IN MANUFACTURING MARKET, BY INDUSTRY □ 142	
9.1 □ INTRODUCTION □ 143	
9.2 □ AUTOMOTIVE □ 145	

9.2.1 ELEVATING DEPLOYMENT OF AI-POWERED CAMERA-BASED AUTONOMOUS DRIVING SOLUTIONS TO PROPEL MARKET	145
9.3 ENERGY & POWER	149
9.3.1 NEED TO SYNCHRONIZE PRODUCTION SCHEDULES AND QUALITY CONTROL ACROSS ENERGY ASSETS TO BOOST ADOPTION	149
9.4 PHARMACEUTICALS	153
9.4.1 NECESSITY TO MAINTAIN CONSISTENT PRODUCT QUALITY TO STIMULATE DEMAND	153
9.5 METALS & HEAVY MACHINERY	158
9.5.1 ESCALATING NEED TO MONITOR HEAT, SOUND, LIGHT, ODOR, AND VIBRATIONS IN METALS AND HEAVY MACHINERY TO PUSH DEMAND	158
9.6 SEMICONDUCTOR & ELECTRONICS	162
9.6.1 PRESSING NEED TO SCALE UP PRODUCTION WHILE MAINTAINING QUALITY TO ACCELERATE DEMAND	162
9.7 FOOD & BEVERAGES	166
9.7.1 GROWING ADOPTION OF AUTOMATION TO MAINTAIN HYGIENIC FOOD PROCESSING SOLUTIONS TO FUEL MARKET GROWTH	166
9.8 OTHER INDUSTRIES	171
10 ARTIFICIAL INTELLIGENCE IN MANUFACTURING MARKET, BY REGION	176
10.1 INTRODUCTION	177
10.2 NORTH AMERICA	179
10.2.1 MICROECONOMIC OUTLOOK FOR NORTH AMERICA	179
10.2.2 US	182
10.2.2.1 Private investments in AI manufacturing infrastructure development to accelerate market growth	182
10.2.3 CANADA	183
10.2.3.1 Strategic alignment of public-private investments to integrate AI into manufacturing to fuel market growth	183
?	
10.2.4 MEXICO	184
10.2.4.1 Rapid expansion of AI startup ecosystem to foster market growth	184
10.3 EUROPE	186
10.3.1 MICROECONOMIC OUTLOOK FOR EUROPE	186
10.3.2 GERMANY	189
10.3.2.1 Integration of big data technologies within factories and rise in AI startups to support market growth	189
10.3.3 UK	191
10.3.3.1 Launch of AI Opportunities Action Plan to contribute to market growth	191
10.3.4 FRANCE	192
10.3.4.1 Substantial investment in AI and cloud technologies, along with data center expansion, to expedite market growth	192
10.3.5 ITALY	193
10.3.5.1 Emphasis on cultivating skilled professionals in AI technologies to facilitate market growth	193
10.3.6 POLAND	195
10.3.6.1 Influx of capital to foster AI innovation and research to promote market growth	195
10.3.7 SPAIN	196
10.3.7.1 Rapid digital transformation to optimize production and improve quality control to create growth opportunities	196
10.3.8 NORDIC	197
10.3.8.1 Significant investments in digital infrastructure and talent development to fuel market growth	197

10.3.9 REST OF EUROPE 199

10.4 ASIA PACIFIC 200

10.4.1 CHINA 203

10.4.1.1 Rapid expansion of smart factories to accelerate market growth 203

10.4.2 JAPAN 205

10.4.2.1 Development of advanced large language models, industrial AI platforms, and robotics solutions for meeting factory needs to drive demand 205

10.4.3 SOUTH KOREA 206

10.4.3.1 Significant focus on development of humanoid robots to spike demand 206

10.4.4 INDIA 207

10.4.4.1 Shift from AI pilot projects to full-scale integration in industrial plants to create opportunities 207

10.4.5 AUSTRALIA 209

10.4.5.1 Public-private partnerships, infrastructure upgrades, and government initiatives in the AI space to expedite market expansion 209

10.4.6 MALAYSIA 210

10.4.6.1 High focus on building AI startups and expanding AI chip production to create opportunities 210

?

10.4.7 THAILAND 211

10.4.7.1 Smart factory pilot programs to boost demand 211

10.4.8 INDONESIA 213

10.4.8.1 Surging adoption of Industry 4.0 across manufacturing firms to promote market growth 213

10.4.9 VIETNAM 214

10.4.9.1 Smart factor programs and large-scale infrastructure products to create growth opportunities 214

10.4.10 REST OF ASIA PACIFIC 215

10.5 ROW 217

10.5.1 MIDDLE EAST 219

10.5.1.1 Saudi Arabia 220

10.5.1.1.1 Heavy investments in AI and talent development to support market growth 220

10.5.1.2 UAE 221

10.5.1.2.1 Strategic partnership with academia to create AI talent pipeline to contribute to market growth 221

10.5.1.3 Qatar 221

10.5.1.3.1 Adoption of eco-friendly manufacturing practices and energy-efficient technologies to boost demand 221

10.5.1.4 Kuwait 221

10.5.1.4.1 Rise of AI-driven manufacturing for predictive maintenance and real-time monitoring in oil field production to fuel market growth 221

10.5.1.5 Oman 221

10.5.1.5.1 Involvement of startups in developing AI solutions addressing local manufacturing challenges to spur demand 221

10.5.1.6 Bahrain 222

10.5.1.6.1 Foreign direct investment in AI technologies to support market growth 222

10.5.1.7 Rest of Middle East 222

10.5.2 AFRICA 223

10.5.2.1 South Africa 224

10.5.2.1.1 Significant AI investment focused on innovation, startup support, and workforce development to drive market 224

10.5.2.2 Other African countries 224

Scotts International. EU Vat number: PL 6772247784

tel. 0048 603 394 346 e-mail: support@scotts-international.com

www.scotts-international.com

10.5.3 SOUTHERN AMERICA	225
10.5.3.1 Brazil	226
10.5.3.1.1 Funding toward high-performance computing, national data centers, and startup support to favor market expansion	226
10.5.3.2 Argentina	227
10.5.3.2.1 Collaborative technology transfer programs to support market growth	227
10.5.3.3 Rest of South America	227
11 COMPETITIVE LANDSCAPE	228
11.1 OVERVIEW	228
11.2 KEY PLAYER STRATEGIES/RIGHT TO WIN, 2023-2025	228
11.3 REVENUE ANALYSIS, 2020-2024	231
11.4 MARKET SHARE ANALYSIS, 2024	232
11.5 COMPANY VALUATION AND FINANCIAL METRICS	234
11.6 BRAND COMPARISON	235
11.7 COMPANY EVALUATION MATRIX: KEY PLAYERS, 2024	236
11.7.1 STARS	236
11.7.2 EMERGING LEADERS	236
11.7.3 PERVASIVE PLAYERS	236
11.7.4 PARTICIPANTS	236
11.7.5 COMPANY FOOTPRINT: KEY PLAYERS, 2024	238
11.7.5.1 Company footprint	238
11.7.5.2 Region footprint	239
11.7.5.3 Industry footprint	239
11.7.5.4 Offering footprint	240
11.7.5.5 Technology footprint	241
11.7.5.6 Application footprint	241
11.8 COMPANY EVALUATION MATRIX: STARTUPS/SMES, 2024	242
11.8.1 PROGRESSIVE COMPANIES	242
11.8.2 RESPONSIVE COMPANIES	242
11.8.3 DYNAMIC COMPANIES	242
11.8.4 STARTING BLOCKS	243
11.8.5 COMPETITIVE BENCHMARKING: STARTUPS/SMES, 2024	244
11.8.5.1 Detailed list of key startup/SMEs	244
11.8.5.2 Competitive benchmarking of key startup/SMEs	245
11.9 COMPETITIVE SCENARIO	246
11.9.1 PRODUCT LAUNCHES	246
11.9.2 DEALS	250
11.9.3 EXPANSIONS	257
12 COMPANY PROFILES	258
12.1 KEY PLAYERS	258
12.1.1 NVIDIA CORPORATION	258
12.1.1.1 Business overview	258
12.1.1.2 Products/Solutions/Services offered	260
12.1.1.3 Recent developments	260
12.1.1.3.1 Product launches	260
12.1.1.3.2 Deals	261
?	

12.1.1.4 MnM view 263
12.1.1.4.1 Key strengths/Right to win 263
12.1.1.4.2 Strategic choices 263
12.1.1.4.3 Weaknesses/Competitive threats 263
12.1.2 IBM 264
12.1.2.1 Business overview 264
12.1.2.2 Products/Solutions/Services offered 265
12.1.2.3 Recent developments 266
12.1.2.3.1 Product launches 266
12.1.2.3.2 Deals 267
12.1.2.4 MnM view 269
12.1.2.4.1 Key strengths/Right to win 269
12.1.2.4.2 Strategic choices 269
12.1.2.4.3 Weaknesses/Competitive threats 269
12.1.3 SIEMENS 270
12.1.3.1 Business overview 270
12.1.3.2 Products/Solutions/Services offered 271
12.1.3.3 Recent developments 272
12.1.3.3.1 Product launches 272
12.1.3.3.2 Deals 273
12.1.3.4 MnM view 274
12.1.3.4.1 Key strengths/Right to win 274
12.1.3.4.2 Strategic choices 274
12.1.3.4.3 Weaknesses/Competitive threats 274
12.1.4 ABB 275
12.1.4.1 Business overview 275
12.1.4.2 Products/Solutions/Services offered 276
12.1.4.3 Recent developments 277
12.1.4.3.1 Deals 277
12.1.4.4 MnM view 277
12.1.4.4.1 Key strengths/Right to win 277
12.1.4.4.2 Strategic choices 278
12.1.4.4.3 Weaknesses/Competitive threats 278
12.1.5 HONEYWELL INTERNATIONAL INC. 279
12.1.5.1 Business overview 279
12.1.5.2 Products/Solutions/Services offered 280
12.1.5.3 Recent developments 281
12.1.5.3.1 Product launches 281
12.1.5.4 MnM view 281
12.1.5.4.1 Key strengths/Right to win 281
12.1.5.4.2 Strategic choices 281
12.1.5.4.3 Weaknesses/Competitive threats 281
12.1.6 GE VEROVA 282
12.1.6.1 Business overview 282
12.1.6.2 Products/Solutions/Services offered 283
12.1.6.3 Recent developments 284
12.1.6.3.1 Product launches 284

12.1.7 GOOGLE LLC 285
12.1.7.1 Business overview 285
12.1.7.2 Products/Solutions/Services offered 287
12.1.8 MICROSOFT 288
12.1.8.1 Business overview 288
12.1.8.2 Products/Solutions/Services offered 289
12.1.8.3 Recent developments 290
12.1.8.3.1 Product launches 290
12.1.8.3.2 Deals 290
12.1.8.3.3 Expansions 291
12.1.9 MICRON TECHNOLOGY, INC. 292
12.1.9.1 Business overview 292
12.1.9.2 Products/Solutions/Services offered 293
12.1.9.3 Recent developments 294
12.1.9.3.1 Product launches 294
12.1.9.3.2 Expansions 294
12.1.10 INTEL CORPORATION 295
12.1.10.1 Business overview 295
12.1.10.2 Products/Solutions/Services offered 296
12.1.10.3 Recent developments 297
12.1.10.3.1 Product launches 297
12.1.10.3.2 Deals 298
12.1.11 AMAZON WEB SERVICES, INC. 299
12.1.11.1 Business overview 299
12.1.11.2 Products/Solutions/Services offered 301
12.1.11.3 Recent developments 301
12.1.11.3.1 Product launches 301
12.1.11.3.2 Deals 302
12.1.12 ROCKWELL AUTOMATION 303
12.1.12.1 Business overview 303
12.1.12.2 Products/Solutions/Services offered 305
12.1.12.3 Recent developments 305
12.1.12.3.1 Deals 305
?
12.1.13 SAP SE 306
12.1.13.1 Business overview 306
12.1.13.2 Products/Solutions/Services offered 307
12.1.13.3 Recent developments 308
12.1.13.3.1 Deals 308
12.1.14 ORACLE 309
12.1.14.1 Business overview 309
12.1.14.2 Products/Solutions/Services offered 310
12.1.15 MITSUBISHI ELECTRIC CORPORATION 311
12.1.15.1 Business overview 311
12.1.15.2 Products/Solutions/Services offered 312
12.1.16 PTC 313
12.1.16.1 Business overview 313

12.1.16.2 Products/Solutions/Services offered	314
12.1.16.3 Recent developments	315
12.1.16.3.1 Product launches	315
12.1.16.3.2 Deals	315
12.1.17 SCHNEIDER ELECTRIC	316
12.1.17.1 Business overview	316
12.1.17.2 Products/Solutions/Services offered	318
12.1.17.3 Recent developments	318
12.1.17.3.1 Deals	318
12.2 OTHER PLAYERS	319
12.2.1 CISCO SYSTEMS, INC.	319
12.2.2 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP	320
12.2.3 DASSAULT SYSTEMES	321
12.2.4 PROGRESS SOFTWARE CORPORATION	322
12.2.5 ZEBRA TECHNOLOGIES CORP.	323
12.2.6 UBTECH ROBOTICS CORP LTD	324
12.2.7 AQUANT	324
12.2.8 BRIGHT MACHINES, INC.	325
12.2.9 AVATHON	326
12.2.10 SIGHT MACHINE	327
13 APPENDIX	328
13.1 DISCUSSION GUIDE	328
13.2 KNOWLEDGESTORE: MARKETSANDMARKETS' SUBSCRIPTION PORTAL	331
13.3 CUSTOMIZATION OPTIONS	333
13.4 RELATED REPORTS	333
13.5 AUTHOR DETAILS	334

Scotts International. EU Vat number: PL 6772247784

tel. 0048 603 394 346 e-mail: support@scotts-international.com

www.scotts-international.com

Artificial Intelligence in Manufacturing Market by Processor (MPUs, GPUs, FPGAs, ASICs), Software (On-premises, Cloud), Technology (Machine Learning, NLP, Context-aware Computing, Computer Vision, Generative AI), Application - Global Forecast to 2030

Market Report | 2025-08-21 | 335 pages | MarketsandMarkets

To place an Order with Scotts International:

- Print this form
- Complete the relevant blank fields and sign
- Send as a scanned email to support@scotts-international.com

ORDER FORM:

Select license	License	Price
	Single User	\$4950.00
	Multi User	\$6650.00
	Corporate License	\$8150.00
	Enterprise Site License	\$10000.00
		VAT
		Total

*Please circle the relevant license option. For any questions please contact support@scotts-international.com or 0048 603 394 346.

** VAT will be added at 23% for Polish based companies, individuals and EU based companies who are unable to provide a valid EU Vat Numbers.

Email*	<input type="text"/>	Phone*	<input type="text"/>
First Name*	<input type="text"/>	Last Name*	<input type="text"/>
Job title*	<input type="text"/>		
Company Name*	<input type="text"/>	EU Vat / Tax ID / NIP number*	<input type="text"/>
Address*	<input type="text"/>	City*	<input type="text"/>

Scotts International. EU Vat number: PL 6772247784

tel. 0048 603 394 346 e-mail: support@scotts-international.com

www.scotts-international.com

Zip Code*

Country*

Date

Signature

Scotts International. EU Vat number: PL 6772247784

tel. 0048 603 394 346 e-mail: support@scotts-international.com

www.scotts-international.com