

3D Printing Plastics Market by Type (Photopolymer, ABS, Polyamide, PLA, PETG), Form (Filament, Liquid, Powder), Application (Prototyping, Manufacturing, Tooling), End-use Industry (Healthcare, Aerospace & Defense, Automotive, Consumer Goods), and Region- Global Forecast to 2030

Market Report | 2025-07-16 | 316 pages | MarketsandMarkets

AVAILABLE LICENSES:

- Single User \$4950.00
- Multi User \$6650.00
- Corporate License \$8150.00
- Enterprise Site License \$10000.00

Report description:

The 3D printing plastics market is projected to grow from USD 2.36 billion in 2025 to USD 5.39 billion by 2030, at a CAGR of 18.0% during the forecast period. Acrylonitrile Butadiene Styrene (ABS) was the third-largest segment of the global 3D printing plastics market in 2024, after PLA, owing to its versatile end-uses and cost-effective properties, along with its higher application in most of the 3D printing technologies. Renowned for its impact resistance, strength, and thermal stability, ABS is most commonly used for functional prototyping and manufacturing of end-use parts, especially those requiring robust, toughness components, automotive parts, electronics, enclosures, and mechanical assemblies. It is particularly suitable for the most widely used 3D printing process of Fused Deposition Modelling (FDM) and can serve both professional users and desktop printer users. ABS also permits post-production painting, sanding, drilling, and plating, and acetone vapor treatment can help in ensuring enhanced surface finish and functionality for polished part prototypes. The recent shift toward low-run custom manufacturing and 3D printing has made ABS even more relevant owing to its low cost and extremely smooth finish. They have also recently adapted ABS by adding fillers to modify the ABS, which results in better flow and reduced warping, and it also helps with layer adhesion, further extending the application of ABS for complex geometries and large prints. Furthermore, its recyclability and variety of color options (as well as grades) also contribute to its steady growth.

"In terms of value, the powder form segment accounted for the third-largest share of the overall 3D printing plastics market in 2024."

The powder form segment had the third-highest share of form segment 3D printing plastics market due to its significance for

Scotts International. EU Vat number: PL 6772247784

tel. 0048 603 394 346 e-mail: support@scotts-international.com

www.scotts-international.com

industrial grade additive-manufacturing and its relevance to advanced 3D printing technologies such as SLS (Selective Laser Sintering), MJF (Multi Jet Fusion), and EBM (Electron Beam Melting). These technologies are valued for creating highly detailed, mechanically strong, and dimensionally stable parts, especially for mission-critical applications in aerospace, automotive, medical, and industrial tooling. In the 3D printing world, powder-based techniques are used to produce highly complex shapes with high surface quality and good isotropic mechanical properties when compared to alternative printing materials such as filaments or resin. Re-use of unsintered powder from each building cycle is also a material efficiency and cost-saving advantage that makes it a more sustainable solution for the production environment. Powder-based materials like polyamide (nylon), thermoplastic polyurethane (TPU), and PEEK also possess high strength, durability, and thermal resistance, expanding their utility for both functional prototyping and end-use part production. Furthermore, the usage of digital manufacturing and on-demand production models has been expanding, especially mass customization and low-quantity production, which has increased the importance of powder-based systems. With the increasing requirements on speed, accuracy, and scalability from industrial users, powder-based 3D printing technologies have been continuously refined in the aspect of powder flowability, recycling, and fusion quality, placing this segment in a promising position.

"In terms of value, the manufacturing application accounted for the second-largest share of the 3D printing plastics market in 2024"

The manufacturing application segment was the second-largest of the overall 3D printing plastics market in 2024 because of its transformative nature in modern production. Manufacturers in automotive, aerospace, consumer electronics, healthcare, and heavy machinery are switching from traditional subtractive methods to additive manufacturing with 3D printing plastics as it is improving production efficiency, enhancing flexibility, and reducing production costs. In manufacturing, 3D-printed plastics are heavily used for rapid prototyping, with designers and engineers able to prototype many different product ideas without expensive tooling. More than just prototyping, end-use parts and tooling components such as molds, jigs, fixtures, gages, and production aids are now frequently made with high-performance thermoplastics, which include ABS, nylon, PETG, and carbon-fiber-infused composites. These materials have excellent strength, abrasion resistance, and heat resistance, which are ideal for creating components that can be used in harsh industrial environments. New models of production, such as on-demand and decentralized production, are changing the market dynamics of manufacturing. Digital inventories and decentralized manufacturing centers help to decrease inventory costs while also improving delivery speed. This is important for the custom and low-volume components, which can be so costly by traditional manufacturing. In alignment with the evolution of Industry 4.0 in practice, 3D printing is becoming more embedded into smart manufacturing architecture that plans, predicts, and monitors quality by interjecting automation, AI, and IoT.

"In terms of value, the consumer goods industry accounted for the fourth-largest share of the 3D printing plastics market in 2024" Owing to the buoyant nature of the consumer goods market and its increasing reliance on fast, flexible, low-cost manufacturing methods, the consumer goods industry had the fourth-highest share of the total 3D printing plastics market. 3D printing has the functionality that allows brands to go through product development much more efficiently, not only by simplifying iterations but also by eliminating expensive molds or tooling. This becomes important with low-volume products (especially prototypes or things driven by seasons/trends). A trend we see is that consumer wants have evolved toward personalized demand. 3D printing can enable mass customizations, custom-fit sunglasses, custom fashion pieces, or custom smartphone accessories. The rise of e-commerce platforms and direct-to-consumer business models has also given small businesses, entrepreneurs, and startups the ability to use 3D printing as a means to market new products with little capital investment. The market for 3D plastic material is also expanding. We are seeing new iterations of 3D plastic materials, such as biodegradable PLA, high-impact resistant ABS, flexible TPU, and highly detailed solderable photopolymers for many colors and functional applications. Many consumer brands are also beginning to experiment more with sustainable practices and using 3D printing as a means to lessen their waste footprint, with an emphasis on designs that optimize minimal form and function. Moreover, innovations in multi-material and full-color 3D printing are enabling the production of consumer goods with intricate designs, vibrant finishes, and embedded functionalities, further expanding creative possibilities.

"During the forecast period, the 3D printing plastics market in North America is projected to be the largest"

North America is anticipated to rank as the largest-growing region in the 3D printing plastics market throughout the forecast

period. This growth can be attributed to a robust commitment to clean energy and a well-established infrastructure for 3D printing plastics. New product developments, capacity expansions, and the establishment of plants by various leading players in this region majorly drive the growth of the 3D printing plastics market in North America. Demand for composites from the automotive, aerospace & defense, and healthcare industries is projected to increase due to product innovations and technological advancements in the applications of 3D printing plastics in these industries. The US houses leading 3D printing companies such as Stratasys and 3D Systems Inc. that innovate materials, hardware, and software. These companies are investing and developing new advanced plastic materials such as photopolymers, high-performance thermoplastics, and composite filaments that can support propositions for high-value applications. The global 3D printing materials market in the North American region is witnessing high demand for 3D printing plastics from its dominant end-use industries, such as aerospace & defense, automotive, healthcare, and consumer goods. 3D printing plastics have become popular among companies within these industries because the materials can speed up product development time, drive down costs, and provide economical low-volume manufacturing. Moreover, the advanced manufacturing abilities of the region, accompanied by ongoing materials science technological developments and favorable regulatory landscape, are among the key factors responsible for the rapid growth of the 3D printing plastics market.

This study has been validated through interviews with industry experts globally. The primary sources have been divided into the following three categories:

By Company Type: Tier 1 - 60%, Tier 2 - 20%, and Tier 3 - 20%

By Designation: C-level - 33%, Director-level - 33%, and Managers - 34%

By Region: North America - 20%, Europe - 25%, Asia Pacific - 25%, Middle East & Africa - 20%, and South America - 10%

The report provides a comprehensive analysis of the following companies:

3D Systems, Inc. (US), Arkema (France), Materialise (Belgium), Stratasys (US), Syensq (Belgium), Shenzhen Esun Industrial Co., Ltd. (China), Evonik Industries AG (Germany), EOS GmbH (Germany), Formlabs (US), SABIC (Saudi Arabia), CRP TECHNOLOGY S.r.l. (Italy), Henkel AG & Co. KGaA (Germany), Huntsman International LLC (US), Ensinger (Germany), and Zortrax (Poland).

Research Coverage

This research report categorizes the 3D printing plastics market based on Type (Photopolymer, ABS, Polyamide, PLA, PETG), Form (Filament, Liquid, Powder), Application (Prototyping, Manufacturing, Tooling), End-use Industry (Healthcare, Aerospace & Defense, Automotive, Consumer Goods), and region (North America, Europe, Asia Pacific, Middle East & Africa, and Latin America).

The scope of the report includes detailed information about the major factors influencing the growth of the 3D printing plastics market, such as drivers, restraints, challenges, and opportunities. A thorough examination of the key industry players has been conducted to provide insights into their business overviews, solutions and services, key strategies, and recent developments in the 3D printing plastics market are all covered. This report includes a competitive analysis of the upcoming startups in the 3D printing plastics market ecosystem.

Reasons to Buy this Report

The report will help the market leaders/new entrants in this market with information on the closest approximations of the revenue numbers for the overall 3D printing plastics market and the subsegments. This report will help stakeholders understand the competitive landscape and gain more insights to position their businesses better and plan suitable go-to-market strategies. The report also helps stakeholders understand the market pulse and provides information on key market drivers, restraints, challenges, and opportunities.

The report provides insights on the following pointers:

Analysis of key drivers (Government initiatives to surge adoption of 3D printing technologies, development of application-specific grades), restraints (Environmental concerns regarding disposal of plastic products), opportunities (Increasing demand for bio-based plastic grades), and challenges (technological advancements in 3D printing) influencing the growth of the 3D printing plastics market.

? Product Development/Innovation: Detailed insights into upcoming technologies, research & development activities, and product launches in the 3D printing plastics market.

? Market Development: Comprehensive information about lucrative markets ? the report analyzes the 3D printing plastics market across varied regions.

? Market Diversification: Exhaustive information about services, untapped geographies, recent developments, and investments in the 3D printing plastics market.

? Competitive Assessment: In-depth assessment of market shares, growth strategies, and offerings of leading players such as 3D Systems, Inc. (US), Arkema (France), Materialise (Belgium), Stratasys (US), Syensq (Belgium), Shenzhen Esun Industrial Co., Ltd. (China), Evonik Industries AG (Germany), EOS GmbH (Germany), Formlabs (US), SABIC (Saudi Arabia), CRP TECHNOLOGY S.r.l. (Italy), Henkel AG & Co. KGaA (Germany), Huntsman International LLC (US), Ensinger (Germany), and Zortrax (Poland) in the 3D printing plastics market

Table of Contents:

1	INTRODUCTION	29
1.1	STUDY OBJECTIVES	29
1.2	MARKET DEFINITION	29
1.3	MARKET SCOPE	30
1.3.1	INCLUSIONS AND EXCLUSIONS	31
1.3.2	YEARS CONSIDERED	32
1.3.3	CURRENCY CONSIDERED	32
1.3.4	UNITS CONSIDERED	32
1.4	LIMITATIONS	33
1.5	STAKEHOLDERS	33
1.6	SUMMARY OF CHANGES	33
2	RESEARCH METHODOLOGY	34
2.1	RESEARCH DATA	34
2.1.1	SECONDARY DATA	35
2.1.1.1	Key data from secondary sources	36
2.1.2	PRIMARY DATA	37
2.1.2.1	Key data from primary sources	37
2.1.2.2	Interviews with top 3D printing plastic manufacturers	37
2.1.2.3	Breakdown of primary interviews with experts	38
2.1.2.4	Key industry insights	38
2.2	BASE NUMBER CALCULATION	39
2.2.1	APPROACH 1: SUPPLY-SIDE APPROACH	39
2.2.2	APPROACH 2: DEMAND-SIDE APPROACH	39
2.3	GROWTH FORECAST	40
2.3.1	SUPPLY SIDE	40
2.3.2	DEMAND SIDE	40
2.4	MARKET SIZE ESTIMATION	40
2.4.1	BOTTOM-UP APPROACH	40
2.4.2	TOP-DOWN APPROACH	41
2.5	DATA TRIANGULATION	42

2.6 FACTOR ANALYSIS	43
2.7 RESEARCH ASSUMPTIONS	43
2.8 RESEARCH LIMITATIONS AND RISK ASSESSMENT	44
3 EXECUTIVE SUMMARY	45
?	
4 PREMIUM INSIGHTS	49
4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN 3D PRINTING PLASTICS MARKET	49
4.2 3D PRINTING PLASTICS MARKET BY END-USE INDUSTRY AND REGION	50
4.3 3D PRINTING PLASTICS MARKET, BY TYPE	50
4.4 3D PRINTING PLASTICS MARKET, BY FORM	51
4.5 3D PRINTING PLASTICS MARKET, BY APPLICATION	51
4.6 3D PRINTING PLASTICS MARKET, BY END-USE INDUSTRY	52
4.7 3D PRINTING PLASTICS MARKET, BY KEY COUNTRY	52
5 MARKET OVERVIEW	53
5.1 INTRODUCTION	53
5.2 MARKET DYNAMICS	54
5.2.1 DRIVERS	54
5.2.1.1 Increased supply of 3D printing plastics due to forward integration of key polymer companies	54
5.2.1.2 Development of application-specific plastic grades	55
5.2.1.3 Government initiatives to surge adoption of 3D printing technologies	55
5.2.2 RESTRAINTS	55
5.2.2.1 Environmental concerns regarding disposal of plastic products	55
5.2.2.2 Lack of mass production to drive large players out	55
5.2.2.3 Regulations on use of specific grades of plastics	56
5.2.3 OPPORTUNITIES	56
5.2.3.1 Increasing demand for bio-based plastic grades	56
5.2.3.2 Enhanced performance of composite grades in industrial applications	56
5.2.4 CHALLENGES	56
5.2.4.1 Technological advancements in 3D printing	56
5.2.4.2 High manufacturing costs of commercial-grade plastics	56
5.3 PORTER'S FIVE FORCES ANALYSIS	57
5.3.1 THREAT OF NEW ENTRANTS	58
5.3.2 THREAT OF SUBSTITUTES	58
5.3.3 BARGAINING POWER OF BUYERS	58
5.3.4 BARGAINING POWER OF SUPPLIERS	58
5.3.5 INTENSITY OF COMPETITIVE RIVALRY	59
5.4 SUPPLY CHAIN ANALYSIS	59
5.5 VALUE CHAIN ANALYSIS	60
5.5.1 RAW MATERIALS	61
5.5.2 MANUFACTURING	61
5.5.3 APPLICATIONS AND END-USE INDUSTRIES	61
5.6 ECOSYSTEM ANALYSIS	62
?	
5.7 PRICING ANALYSIS	63
5.7.1 AVERAGE SELLING PRICE TREND, BY END-USE INDUSTRY (KEY PLAYERS)	63
5.7.2 AVERAGE SELLING PRICE TREND	64

5.7.3 AVERAGE SELLING PRICE TREND, BY REGION, 2021-2030, (USD/KG) 64
5.8 KEY STAKEHOLDERS & BUYING CRITERIA 65
5.8.1 KEY STAKEHOLDERS IN BUYING PROCESS 65
5.8.2 BUYING CRITERIA 66
5.9 TECHNOLOGY ANALYSIS 66
5.9.1 KEY TECHNOLOGIES 66
5.9.1.1 Material extrusion 66
5.9.1.2 Vat polymerization 67
5.9.1.3 Power bed fusion 67
5.9.1.4 Material jetting 67
5.9.1.5 Direct energy deposition (DED) 67
5.9.2 COMPLEMENTARY TECHNOLOGIES 67
5.9.2.1 Micro 3D printing 67
5.9.2.2 Binder jetting 67
5.10 CASE STUDY ANALYSIS 69
5.10.1 AIRBUS - 3D PRINTED POLYMER PARTS FOR AIRCRAFT INTERIORS 69
5.10.2 PORSCHE - 3D PRINTED ELECTRIC DRIVE HOUSING AND PERFORMANCE PARTS 70
5.11 TRENDS/DISRUPTIONS IMPACTING CUSTOMER BUSINESS 70
5.12 TARIFF AND REGULATORY LANDSCAPE 71
5.12.1 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS 71
5.13 KEY CONFERENCES & EVENTS IN 2025-2026 73
5.14 TRADE DATA ANALYSIS 74
5.14.1 IMPORT SCENARIO (HS CODE 390330) 74
5.14.2 EXPORT SCENARIO (HS CODE 390330) 75
5.15 PATENT ANALYSIS 76
5.15.1 INTRODUCTION 76
5.15.2 METHODOLOGY 76
5.15.3 DOCUMENT TYPES 77
5.15.4 INSIGHTS 78
5.15.5 LEGAL STATUS 78
5.15.6 JURISDICTION ANALYSIS 78
5.15.7 TOP APPLICANTS 79
5.16 IMPACT OF GEN AI/AI ON 3D PRINTING PLASTIC MARKET 81
5.16.1 TOP USE CASES AND MARKET POTENTIAL 81
5.16.2 CASE STUDIES OF AI IMPLEMENTATION IN 3D PRINTING PLASTICS MARKET 82
5.17 INVESTMENT AND FUNDING SCENARIO 82
5.18 IMPACT OF 2025 US TARIFF: 3D PRINTING PLASTICS MARKET 83
5.18.1 INTRODUCTION 83
5.18.2 KEY TARIFF RATES 84
5.18.3 PRICE IMPACT ANALYSIS 85
5.18.4 KEY IMPACTS ON VARIOUS REGIONS 86
5.18.4.1 US 86
5.18.4.2 Europe 87
5.18.4.3 Asia Pacific 88
5.18.5 IMPACT ON END-USE INDUSTRIES 91
6 3D PRINTING PLASTICS MARKET, BY TYPE 92
6.1 INTRODUCTION 93

6.2 PHOTOPOLYMERS	95
6.2.1 WIDE DEPLOYMENT IN VARIOUS END-USE INDUSTRIES TO DRIVE MARKET	95
6.3 PLA	97
6.3.1 PLA INCREASING USE IN HEALTHCARE INDUSTRY TO DRIVE MARKET	97
6.4 ABS	98
6.4.1 HIGH DEMAND IN COMMERCIAL APPLICATIONS TO DRIVE MARKET	98
6.5 PETG	100
6.5.1 LOW PRICE AND STRONG MECHANICAL PROPERTIES TO DRIVE MARKET	100
6.6 POLYAMIDE	102
6.6.1 GROWING DEMAND FOR LASER SINTERING TECHNOLOGY TO DRIVE MARKET	102
6.7 OTHER TYPES	103
7 3D PRINTING PLASTICS MARKET, BY FORM	106
7.1 INTRODUCTION	107
7.2 FILAMENT	108
7.2.1 INCREASING DEMAND FOR IMPLANTS, AUTOMOTIVE PARTS, AND AIRCRAFT PARTS TO DRIVE MARKET	108
7.3 LIQUID	110
7.3.1 SIGNIFICANT USE IN HEALTHCARE, AEROSPACE & DEFENSE, AND ELECTRICAL & ELECTRONICS INDUSTRIES TO DRIVE MARKET	110
7.4 POWDER	112
7.4.1 STRENGTH AND FLEXIBILITY OF POWDER-BASED PLASTICS TO DRIVE MARKET	112
8 3D PRINTING PLASTICS MARKET, BY APPLICATION	114
8.1 INTRODUCTION	115
8.2 PROTOTYPING	116
8.2.1 INCREASING DEMAND FROM AUTOMOTIVE SECTOR TO DRIVE MARKET	116
8.3 MANUFACTURING	118
8.3.1 ADOPTION OF 3D PRINTING IN MASS PRODUCTION OF COMPONENTS TO DRIVE MARKET	118
8.4 TOOLING	119
8.4.1 ABILITY TO REDUCE LEAD TIMES AND LOWER COSTS TO DRIVE MARKET	119
9 3D PRINTING PLASTICS MARKET, BY END-USE INDUSTRY	122
9.1 INTRODUCTION	123
9.2 AEROSPACE & DEFENSE	125
9.2.1 INCREASING USE IN MANUFACTURING COMPLEX COMPONENTS AND EQUIPMENT TO DRIVE MARKET	125
9.3 HEALTHCARE	128
9.3.1 TECHNOLOGICAL ADVANCEMENT IN PLASTIC GRADES TO DRIVE MARKET	128
9.4 AUTOMOTIVE	130
9.4.1 HIGH DEMAND FOR PROTOTYPING AUTOMOTIVE COMPONENTS TO DRIVE MARKET	130
9.5 CONSUMER GOODS	132
9.5.1 HIGH DEMAND FOR MANUFACTURING COMPLEX DESIGNS IN CONSUMER GOODS TO DRIVE MARKET	132
9.6 OTHER END-USE INDUSTRIES	134
10 3D PRINTING PLASTICS MARKET, BY REGION	137
10.1 INTRODUCTION	138
10.2 NORTH AMERICA	140
10.2.1 NORTH AMERICA: 3D PRINTING PLASTICS MARKET, BY TYPE	141

10.2.2 NORTH AMERICA: 3D PRINTING PLASTICS MARKET, BY FORM 143
10.2.3 NORTH AMERICA: 3D PRINTING PLASTICS MARKET, BY APPLICATION 144
10.2.4 NORTH AMERICA: 3D PRINTING PLASTICS MARKET, BY END-USE INDUSTRY 145
10.2.5 NORTH AMERICA: 3D PRINTING PLASTICS MARKET, BY COUNTRY 146
10.2.5.1 US 147
10.2.5.1.1 Growing manufacturing sector to drive market 147
10.2.5.2 Canada 149
10.2.5.2.1 Favorable government initiatives to drive market 149
10.3 EUROPE 151
10.3.1 EUROPE: 3D PRINTING PLASTICS MARKET, BY TYPE 152
10.3.2 EUROPE: 3D PRINTING PLASTICS MARKET, BY FORM 153
10.3.3 EUROPE: 3D PRINTING PLASTICS MARKET, BY APPLICATION 154
10.3.4 EUROPE: 3D PRINTING PLASTICS MARKET, BY END-USE INDUSTRY 155
10.3.5 EUROPE: 3D PRINTING PLASTICS MARKET, BY COUNTRY 157
10.3.5.1 Germany 158
10.3.5.1.1 High demand from medical & healthcare, aerospace & defense, and automotive industries to drive market 158
10.3.5.2 UK 160
10.3.5.2.1 Favorable government initiatives to drive market 160
10.3.5.3 France 161
10.3.5.3.1 High demand from aerospace & defense industry
to drive market 161
10.3.5.4 Italy 163
10.3.5.4.1 Increasing demand from transportation and aerospace
& defense industries to drive market 163
10.3.5.5 Spain 165
10.3.5.5.1 Rising demand from consumer goods and healthcare industry to drive market 165
10.3.5.6 Rest of Europe 167
10.4 ASIA PACIFIC 168
10.4.1 ASIA PACIFIC: 3D PRINTING PLASTICS MARKET, BY TYPE 169
10.4.2 ASIA PACIFIC: 3D PRINTING PLASTICS MARKET, BY FORM 171
10.4.3 ASIA PACIFIC: 3D PRINTING PLASTICS MARKET, BY APPLICATION 172
10.4.4 ASIA PACIFIC: 3D PRINTING PLASTICS MARKET, BY END-USE INDUSTRY 173
10.4.5 ASIA PACIFIC: 3D PRINTING PLASTICS MARKET, BY COUNTRY 174
10.4.5.1 China 176
10.4.5.1.1 Strong manufacturing base to drive market 176
10.4.5.2 Japan 178
10.4.5.2.1 High demand from automotive and consumer goods industries to drive market 178
10.4.5.3 South Korea 179
10.4.5.3.1 Growing automotive and aerospace & defense industries
to drive market 179
10.4.5.4 India 181
10.4.5.4.1 Various government initiatives to drive market 181
10.4.5.5 Rest of Asia Pacific 183
10.5 LATIN AMERICA 184
10.5.1 LATIN AMERICA: 3D PRINTING PLASTICS MARKET, BY TYPE 184
10.5.2 LATIN AMERICA: 3D PRINTING PLASTICS MARKET, BY FORM 186
10.5.3 LATIN AMERICA: 3D PRINTING PLASTICS MARKET, BY APPLICATION 187

10.5.4	LATIN AMERICA: 3D PRINTING PLASTICS MARKET, BY END-USE INDUSTRY	188
10.5.5	LATIN AMERICA: 3D PRINTING PLASTICS MARKET, BY COUNTRY	189
10.5.5.1	Mexico	191
10.5.5.1.1	Increasing use of recycled plastics in automotive and consumer goods to drive market	191
10.5.5.2	Brazil	192
10.5.5.2.1	Increasing government investments in infrastructure to drive market	192
10.5.5.3	Rest of Latin America	194
10.6	MIDDLE EAST & AFRICA	196
10.6.1	MIDDLE EAST & AFRICA: 3D PRINTING PLASTICS MARKET, BY TYPE	196
10.6.2	MIDDLE EAST & AFRICA: 3D PRINTING PLASTICS MARKET, BY FORM	197
10.6.3	MIDDLE EAST & AFRICA: 3D PRINTING PLASTICS MARKET, BY APPLICATION	199
10.6.4	MIDDLE EAST & AFRICA: 3D PRINTING PLASTICS MARKET, BY END-USE INDUSTRY	200
10.6.5	MIDDLE EAST & AFRICA: 3D PRINTING PLASTICS MARKET, BY COUNTRY	201
?		
10.6.5.1	GCC Countries	203
10.6.5.1.1	UAE	203
10.6.5.1.1.1	Infrastructure push to boost market	203
10.6.5.1.2	Saudi Arabia	205
10.6.5.1.2.1	Industrial Vision 2030 to drive market	205
10.6.5.1.3	Rest of GCC Countries	207
10.6.5.2	South Africa	208
10.6.5.2.1	Increasing demand from healthcare and aerospace & defense industries to drive market	208
10.6.5.3	Rest of Middle East & Africa	210
11	COMPETITIVE LANDSCAPE	212
11.1	OVERVIEW	212
11.2	KEY PLAYER STRATEGIES/RIGHT TO WIN	212
11.3	REVENUE ANALYSIS, 2020-2024	214
11.4	MARKET SHARE ANALYSIS	214
11.5	BRAND/SERVICE COMPARISON	217
11.5.1	BRAND/SERVICE COMPARISON, BY 3D PRINTING PLASTICS	
	MARKET PRODUCT	217
11.6	COMPANY EVALUATION MATRIX: KEY PLAYERS, 2024	219
11.6.1	STARS	219
11.6.2	EMERGING LEADERS	219
11.6.3	PERVASIVE PLAYERS	219
11.6.4	PARTICIPANTS	219
11.6.5	COMPANY FOOTPRINT: KEY PLAYERS, 2024	221
11.6.5.1	Company footprint	221
11.6.5.2	Region footprint	222
11.6.5.3	Type footprint	223
11.6.5.4	Form footprint	224
11.6.5.5	Application footprint	225
11.6.5.6	End-use industry footprint	226
11.7	COMPANY EVALUATION MATRIX: STARTUPS/SMES, 2024	227
11.7.1	PROGRESSIVE COMPANIES	227
11.7.2	RESPONSIVE COMPANIES	227
11.7.3	DYNAMIC COMPANIES	227

11.7.4 STARTING BLOCKS	227
11.7.5 COMPETITIVE BENCHMARKING OF KEY STARTUPS/SMES, 2024	229
11.7.5.1 Detailed list of key startups/SMEs	229
11.7.5.2 Competitive benchmarking of key startups/SMES	230
11.8 VALUATION AND FINANCIAL METRICS OF 3D PRINTING PLASTICS MARKET PROVIDERS	231
11.9 COMPETITIVE SCENARIO	232
11.9.1 PRODUCT LAUNCHES	232
11.9.2 DEALS	236
11.9.3 EXPANSIONS	241
11.9.4 OTHER DEVELOPMENTS	241
12 COMPANY PROFILES	242
12.1 KEY PLAYERS	242
12.1.1 3D SYSTEMS, INC.	242
12.1.1.1 Business overview	242
12.1.1.2 Products/Solutions/Services offered	243
12.1.1.3 Recent developments	246
12.1.1.3.1 Product launches	246
12.1.1.3.2 Deals	247
12.1.1.4 MnM view	248
12.1.1.4.1 Right to win	248
12.1.1.4.2 Strategic choices	248
12.1.1.4.3 Weaknesses and competitive threats	249
12.1.2 ARKEMA	250
12.1.2.1 Business overview	250
12.1.2.2 Products/Solutions/Services offered	251
12.1.2.3 Recent developments	252
12.1.2.3.1 Deals	252
12.1.2.3.2 Product launches	253
12.1.2.3.3 Expansions	254
12.1.2.3.4 Other developments	254
12.1.2.4 MnM view	255
12.1.2.4.1 Right to win	255
12.1.2.4.2 Strategic choices	255
12.1.2.4.3 Weaknesses and competitive threats	255
12.1.3 MATERIALISE	256
12.1.3.1 Business overview	256
12.1.3.2 Products/Solutions/Services offered	257
12.1.3.3 Recent developments	258
12.1.3.3.1 Product launches	258
12.1.3.4 MnM view	258
12.1.3.4.1 Right to win	258
12.1.3.4.2 Strategic choices	259
12.1.3.4.3 Weaknesses and competitive threats	259
12.1.4 STRATASYS	260
12.1.4.1 Business overview	260
12.1.4.2 Products/Solutions/Services offered	261
12.1.4.3 Recent developments	262

12.1.4.3.1 Deals 262
12.1.4.3.2 Expansions 263
12.1.4.3.3 Other developments 263
12.1.4.4 MnM view 264
12.1.4.4.1 Right to win 264
12.1.4.4.2 Strategic choices 264
12.1.4.4.3 Weaknesses and competitive threats 264
12.1.5 SYENSQO 265
12.1.5.1 Business overview 265
12.1.5.2 Products/Solutions/Services offered 266
12.1.5.3 Recent developments 267
12.1.5.3.1 Product launches 267
12.1.5.4 MnM view 267
12.1.5.4.1 Right to win 267
12.1.5.4.2 Strategic choices 267
12.1.5.4.3 Weaknesses and competitive threats 267
12.1.6 SHENZHEN ESUN INDUSTRIAL CO., LTD. 268
12.1.6.1 Business overview 268
12.1.6.2 Products/Solutions/Services offered 268
12.1.6.3 Recent developments 269
12.1.6.3.1 Deals 269
12.1.6.4 MnM view 269
12.1.6.4.1 Right to win 269
12.1.6.4.2 Strategic choices 270
12.1.6.4.3 Weaknesses and competitive threats 270
12.1.7 EVONIK INDUSTRIES AG 271
12.1.7.1 Business overview 271
12.1.7.2 Products/Solutions/Services offered 272
12.1.7.3 Recent developments 274
12.1.7.3.1 Product launches 274
12.1.7.3.2 Deals 275
12.1.7.4 MnM view 276
12.1.7.4.1 Right to win 276
12.1.7.4.2 Strategic choices 277
12.1.7.4.3 Weaknesses and competitive threats 277
12.1.8 EOS GMBH 278
12.1.8.1 Business overview 278
12.1.8.2 Products/Solutions/Services offered 278
12.1.8.3 MnM view 279
12.1.8.3.1 Right to win 279
12.1.8.3.2 Strategic choices 279
12.1.8.3.3 Weaknesses and competitive threats 279
?
12.1.9 FORMLABS 280
12.1.9.1 Business overview 280
12.1.9.2 Products/Solutions/Services offered 280
12.1.9.3 Recent developments 281

12.1.9.3.1 Product launches 281
12.1.9.4 MnM view 281
12.1.9.4.1 Right to win 281
12.1.9.4.2 Strategic choices 281
12.1.9.4.3 Weaknesses and competitive threats 281
12.1.10 SABIC 282
12.1.10.1 Business overview 282
12.1.10.2 Products/Solutions/Services offered 283
12.1.10.3 MnM view 284
12.1.10.3.1 Right to win 284
12.1.10.3.2 Strategic choices 284
12.1.10.3.3 Weaknesses and competitive threats 284
12.1.11 CRP TECHNOLOGY S.R.L. 285
12.1.11.1 Business overview 285
12.1.11.2 Products/Solutions/Services offered 285
12.1.11.3 Recent developments 287
12.1.11.3.1 Product launches 287
12.1.11.4 MnM view 287
12.1.11.4.1 Right to win 287
12.1.11.4.2 Strategic choices 287
12.1.11.4.3 Weaknesses and competitive threats 287
12.1.12 HENKEL AG & CO. KGAA 288
12.1.12.1 Business overview 288
12.1.12.2 Products/Solutions/Services offered 290
12.1.12.3 Recent developments 291
12.1.12.3.1 Product launches 291
12.1.12.3.2 Deals 291
12.1.12.4 MnM view 292
12.1.12.4.1 Right to win 292
12.1.12.4.2 Strategic choices 292
12.1.12.4.3 Weaknesses and competitive threats 292
12.1.13 HUNTSMAN INTERNATIONAL LLC 293
12.1.13.1 Business overview 293
12.1.13.2 Products/Solutions/Services offered 294
12.1.13.3 MnM view 295
12.1.13.3.1 Right to win 295
12.1.13.3.2 Strategic choices 295
12.1.13.3.3 Weaknesses and competitive threats 295
12.1.14 ENSINGER 296
12.1.14.1 Business overview 296
12.1.14.2 Products/Solutions/Services offered 296
12.1.14.3 MnM view 297
12.1.14.3.1 Right to win 297
12.1.14.3.2 Strategic choices 297
12.1.14.3.3 Weaknesses and competitive threats 297
12.1.15 ZORTRAX 298
12.1.15.1 Business overview 298

12.1.15.2 Products/Solutions/Services offered	298
12.1.15.3 MnM view	299
12.1.15.3.1 Right to win	299
12.1.15.3.2 Strategic choices	299
12.1.15.3.3 Weaknesses and competitive threats	299
12.2 OTHER PLAYERS	300
12.2.1 OXFORD PERFORMANCE MATERIALS	300
12.2.2 ETEC	301
12.2.3 LEHMANN&VOSS&CO.	302
12.2.4 ULTIMAKER	303
12.2.5 3DXTECH	304
12.2.6 VICTREX PLC	305
12.2.7 APIUM 3D TECHNOLOGIES GMBH	305
12.2.8 TREED FILAMENTS	306
12.2.9 PHOTOCENTRIC LTD.	307
12.2.10 TORWELL TECHNOLOGIES CO., LTD.	308
13 APPENDIX	309
13.1 DISCUSSION GUIDE	309
13.2 KNOWLEDGESTORE: MARKETSANDMARKETS' SUBSCRIPTION PORTAL	312
13.3 CUSTOMIZATION OPTIONS	314
13.4 RELATED REPORTS	314
13.5 AUTHOR DETAILS	315

3D Printing Plastics Market by Type (Photopolymer, ABS, Polyamide, PLA, PETG), Form (Filament, Liquid, Powder), Application (Prototyping, Manufacturing, Tooling), End-use Industry (Healthcare, Aerospace & Defense, Automotive, Consumer Goods), and Region- Global Forecast to 2030

Market Report | 2025-07-16 | 316 pages | MarketsandMarkets

To place an Order with Scotts International:

- Print this form
- Complete the relevant blank fields and sign
- Send as a scanned email to support@scotts-international.com

ORDER FORM:

Select license	License	Price
	Single User	\$4950.00
	Multi User	\$6650.00
	Corporate License	\$8150.00
	Enterprise Site License	\$10000.00
		VAT
		Total

*Please circle the relevant license option. For any questions please contact support@scotts-international.com or 0048 603 394 346.

** VAT will be added at 23% for Polish based companies, individuals and EU based companies who are unable to provide a valid EU Vat Numbers.

Email*	<input type="text"/>	Phone*	<input type="text"/>
First Name*	<input type="text"/>	Last Name*	<input type="text"/>
Job title*	<input type="text"/>		
Company Name*	<input type="text"/>	EU Vat / Tax ID / NIP number*	<input type="text"/>
Address*	<input type="text"/>	City*	<input type="text"/>

Scotts International. EU Vat number: PL 6772247784

tel. 0048 603 394 346 e-mail: support@scotts-international.com

www.scotts-international.com

Zip Code*

Country*

Date

Signature

Scotts International. EU Vat number: PL 6772247784

tel. 0048 603 394 346 e-mail: support@scotts-international.com

www.scotts-international.com