Multi-mode Receiver Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Fit (Line-fit, Retrofit), By Subsystem (ILS Receiver, MLS Receiver, GLS Receiver, VOR/DME Receiver), By Platform (Fixed Wing, Rotary Wing), By Region, & Competition, 2020-2030F
Market Report I 2025-01-31 I 182 Pages I TechSci Research
Global multi-mode receiver market was valued at USD 2.43 Billion in 2024 and is expected to reach USD 3.22 Billion by 2030 with a CAGR of 4.8% during the forecast period. The global multi-mode receiver market is witnessing robust growth, driven by advancements in avionics, increasing air traffic, and stringent regulations emphasizing aviation safety. Multi-mode receivers (MMRs) combine multiple navigation and landing systems such as Instrument Landing System (ILS), Microwave Landing System (MLS), Global Navigation Satellite System Landing System (GLS), and VOR/DME, offering enhanced accuracy and reliability for aircraft navigation. Key segments include line-fit and retrofit applications, with line-fit dominating due to demand for factory-integrated solutions in new aircraft. By subsystems, GLS receivers lead as airports worldwide transition to satellite-based navigation for improved efficiency. Fixed-wing platforms remain dominant, thanks to their widespread use in commercial aviation, while rotary-wing aircraft exhibit steady growth, driven by their increasing adoption in military and civil applications. Regionally, North America leads the market due to a well-established aviation infrastructure and early adoption of advanced technologies, while Asia-Pacific is the fastest-growing region, spurred by burgeoning air travel and fleet expansion. Increasing focus on fuel efficiency, reduced carbon emissions, and enhanced situational awareness further propel the market's expansion. Competitive dynamics are shaped by innovations in receiver technology, partnerships between OEMs and airlines, and upgrades in avionics to comply with evolving regulations.
Market Drivers
Rising Air Traffic and Fleet Expansion
The increasing global air traffic has become a significant driver for the multi-mode receiver (MMR) market. Passenger volumes are rising steadily, especially in emerging economies such as India and China, where the middle-class population and disposable incomes are expanding. This surge has led to an unprecedented demand for air travel, prompting airlines to add new routes and expand their fleets. Additionally, the International Air Transport Association (IATA) projects air traffic to double over the next two decades, further underscoring the need for advanced navigation systems. As per IATA, in 2023, global air traffic passenger demand increased by over 36% compared to the previous year, with total traffic reaching 94.1% of pre-pandemic (2019) levels. 2023 saw a 25.3% rise in total traffic compared to December 2022, reaching 97.5% of the December 2019 level. International traffic climbed 41.6% versus 2022, reaching 88.6% of 2019 levels.
MMRs address this growing demand by offering enhanced accuracy in navigation and seamless landing capabilities, ensuring safety and operational efficiency. Airline operators are increasingly prioritizing investments in MMRs to enhance fleet capabilities, reduce operational risks, and comply with evolving aviation safety standards. The integration of MMRs also helps airlines optimize their navigation systems, resulting in better fuel efficiency, lower emissions, and cost savings, which are critical in maintaining profitability in competitive markets.
Regulatory Mandates on Avionics Modernization
Stringent regulations enforced by international aviation bodies such as the Federal Aviation Administration (FAA) and the European Union Aviation Safety Agency (EASA) have significantly influenced the adoption of MMRs. These organizations mandate periodic upgrades to avionics systems to ensure compliance with safety, reliability, and environmental standards. One notable example is the growing requirement for aircraft to be equipped with satellite-based navigation systems like GLS to support precision landings, particularly at airports transitioning from traditional ground-based systems such as Instrument Landing Systems (ILS). These regulations are especially critical as airports face increasing congestion, requiring aircraft to execute accurate approaches and landings under varied weather conditions. For airline operators, these mandates serve as both a challenge and an opportunity. While compliance involves upfront costs, the long-term benefits of enhanced safety, reduced maintenance, and lower fuel consumption outweigh the initial investment. OEMs and retrofit solution providers are capitalizing on these regulations, driving the development of cutting-edge MMR technologies tailored to meet global aviation standards.
Technological Advancements in Avionics Systems
The MMR market has witnessed transformative growth owing to continuous innovations in satellite navigation, digital signal processing, and system integration. These advancements are reshaping how aircraft navigate complex airspaces and approach airports. Modern MMRs are designed with compact architectures that combine multiple navigation subsystems, such as GLS, MLS, and VOR/DME, into a single, lightweight unit. This integration reduces the overall weight of the aircraft, contributing to fuel efficiency and lowering operating costs. Furthermore, MMRs now feature enhanced reliability and self-diagnostic capabilities, ensuring uninterrupted performance in challenging environments.
Another key technological breakthrough is the incorporation of augmented reality overlays, which provide pilots with intuitive visual aids during approach and landing. These overlays improve situational awareness, particularly in low-visibility conditions. Additionally, advancements in automatic error correction and real-time data processing have elevated the precision and reliability of navigation systems, reduced human error and enhanced flight safety. The integration of artificial intelligence (AI) and machine learning (ML) algorithms has further expanded the scope of MMRs. AI-driven systems can predict maintenance needs, optimize flight paths, and adapt to real-time changes in air traffic and weather conditions. These innovations not only enhance the operational efficiency of airlines but also create significant opportunities for manufacturers to differentiate their products in a competitive market.
Key Market Challenges
High Installation and Maintenance Costs
One of the most significant challenges for the multi-mode receiver (MMR) market is the high cost associated with installation and maintenance, particularly for older aircraft. Upgrading to advanced MMR systems often requires retrofitting, which involves significant investments in hardware, software integration, and technical expertise. These costs can be prohibitive for airline operators, especially those with aging fleets or operating in cost-sensitive markets. For line-fit solutions, while costs are often incorporated into the overall price of new aircraft, the expense remains a concern for smaller airlines or low-cost carriers. Retrofit installations, which are critical for modernizing existing fleets, face additional hurdles. These include operational downtime during installation, the complexity of integrating new systems with legacy avionics, and potential compatibility issues. Moreover, advanced MMR systems require regular maintenance and calibration to ensure optimal performance and compliance with safety standards. The need for specialized equipment and skilled personnel further drives up operational costs, making it challenging for airlines to achieve widespread adoption across their fleets.
Limited Infrastructure in Developing Regions
The successful deployment of MMRs depends not only on the aircraft but also on the availability of supporting ground infrastructure. While developed regions like North America and Europe boast well-established aviation infrastructures with ground-based systems like ILS and advanced satellite-based navigation networks, developing regions often lack such facilities. In regions such as Africa, parts of Latin America, and some areas in Asia-Pacific, inadequate ground systems and limited airport modernization efforts hinder the full potential of MMR adoption. For instance, GLS receivers, which rely on satellite-based navigation, may face operational limitations in areas with insufficient satellite coverage or outdated communication systems. This creates a gap between the capabilities of modern MMRs and the actual benefits realized by operators in these regions. Additionally, the high costs associated with infrastructure development and the need for government investment and international collaboration further slow the pace of adoption in developing regions. Without addressing these infrastructure challenges, the benefits of MMRs in terms of precision, safety, and efficiency cannot be fully realized.
Vulnerability to Cybersecurity Threats
As aviation increasingly relies on digital technologies and satellite-based systems, cybersecurity has emerged as a critical challenge for the MMR market. Multi-mode receivers are integral to an aircrafts navigation and landing capabilities, and their reliance on satellite signals, real-time data transmission, and digital integration makes them susceptible to cyberattacks. Potential threats include unauthorized access, signal jamming, spoofing, or tampering with navigation data. For example, a cyberattack targeting satellite navigation systems could lead to incorrect positioning information, potentially resulting in navigation errors or even catastrophic outcomes. The interconnected nature of aviation systems amplifies the risk, as vulnerabilities in one component can impact the broader ecosystem. To mitigate these risks, manufacturers and operators must invest in robust cybersecurity measures, including encryption, intrusion detection systems, and real-time monitoring. However, implementing these safeguards adds to the overall cost and complexity of MMR systems, creating additional challenges for both manufacturers and end-users.
Key Market Trends
Adoption of Satellite-Based Navigation Systems
The aviation industry is undergoing a transformative shift from traditional ground-based navigation systems like the Instrument Landing System (ILS) to satellite-based systems, particularly the Global Navigation Satellite System Landing System (GLS). This transition addresses the growing demand for precise navigation and landing capabilities, especially in increasingly congested airspaces and under adverse weather conditions. GLS offers numerous advantages over legacy systems, including enhanced accuracy, greater coverage, and reduced dependency on physical infrastructure. Unlike ILS, which relies on fixed ground stations with limited reach, GLS uses satellite signals, allowing seamless operation across diverse geographies. This capability is particularly advantageous for remote or underserved regions where establishing and maintaining ground-based infrastructure is challenging. Airports are increasingly adopting GLS to improve operational efficiency and manage higher traffic volumes. For airlines, the adoption of satellite-based navigation systems facilitates shorter and more fuel-efficient flight paths, reducing costs and carbon emissions. Regulatory mandates from organizations like the FAA and EASA also encourage this trend, requiring aircraft to be equipped with GLS-compatible systems. This growing shift toward satellite-based navigation not only improves safety but also paves the way for a more sustainable and efficient aviation ecosystem.
Integration of Artificial Intelligence in Navigation
The integration of artificial intelligence (AI) into multi-mode receivers (MMRs) is revolutionizing aircraft navigation and operational capabilities. AI-powered MMRs enable advanced functionalities such as predictive maintenance, fault diagnosis, and optimized navigation. Machine learning (ML) algorithms, a subset of AI, enhance real-time data processing, improving the accuracy and reliability of navigation systems.
One of the key benefits of AI is its ability to reduce pilot workload by automating routine tasks and providing actionable insights through augmented situational awareness. For instance, AI-powered systems can analyse data from multiple sources, such as weather reports, air traffic conditions, and onboard sensors, to recommend optimal flight paths in real time. This not only enhances safety but also improves operational efficiency. Predictive maintenance is another critical application of AI in MMRs. By analysing historical data and monitoring system performance in real-time, AI can identify potential issues before they escalate, minimizing downtime and maintenance costs. Additionally, fault diagnosis capabilities help operators quickly pinpoint and resolve system errors, ensuring uninterrupted performance. The integration of AI into MMRs is also critical for enabling autonomous flight technologies. As the aviation industry moves toward the development of autonomous aircraft and unmanned aerial vehicles (UAVs), AI-driven navigation systems will play a central role in ensuring safe and efficient operations.
Focus on Lightweight and Energy-Efficient Systems
Weight reduction and energy efficiency are key priorities for the aviation industry as it strives to achieve greater fuel efficiency and reduce carbon emissions. In line with these goals, manufacturers are developing compact and lightweight MMRs using advanced materials and streamlined designs.
Traditional MMRs often consist of multiple subsystems, each dedicated to a specific navigation function. However, modern MMRs integrate these functionalities into a single, compact unit, reducing overall system weight and space requirements. Lightweight systems contribute to lower fuel consumption, directly impacting operational costs and environmental sustainability. Advancements in materials science have also enabled the development of energy-efficient components. For example, the use of lightweight composites and miniaturized electronic circuits enhances system efficiency while maintaining durability and reliability. Additionally, energy-efficient designs ensure that MMRs consume less power, further supporting the aviation industry's sustainability goals. The trend toward lightweight and energy-efficient systems aligns with the broader push for greener aviation technologies. Airlines and OEMs are increasingly prioritizing eco-friendly solutions to meet regulatory requirements and address growing environmental concerns among consumers and stakeholders.
Segmental Insights
Fit Insights
The line-fit segment dominates the multi-mode receiver (MMR) market, driven by its integration in new aircraft during production. Airlines and original equipment manufacturers (OEMs) prefer line-fit solutions as they ensure seamless compatibility with the latest avionics systems and compliance with evolving aviation standards set by regulatory bodies such as the FAA and EASA.
By incorporating MMRs directly into aircraft manufacturing, line-fit installations offer several advantages, including reduced installation costs, faster production timelines, and enhanced operational efficiency. These systems are designed to work optimally within the aircraft's architecture, minimizing the need for post-production modifications or retrofits. The increasing production of new-generation aircraft to meet rising air traffic demand further fuels the dominance of line-fit MMRs. Advanced features like satellite-based GLS and AI-powered functionalities are now standard in modern aircraft, making line-fit the preferred choice for integrating cutting-edge technologies. Additionally, the growing emphasis on sustainability and fuel efficiency has led OEMs to adopt lightweight and energy-efficient MMR designs, further driving their adoption in line-fit applications. As aviation moves toward greener, more advanced technologies, the line-fit segment will continue to lead the market, supported by its reliability, cost-efficiency, and alignment with future-ready standards.
Regional Insights
North America was the dominant region in the multi-mode receiver (MMR) market, attributed to its advanced aviation ecosystem and early adoption of cutting-edge avionics systems. The region is home to major original equipment manufacturers (OEMs) such as Boeing, Lockheed Martin, and Honeywell Aerospace, which play a pivotal role in driving the integration of multi-mode receivers into both commercial and military aircraft. Additionally, regulatory bodies like the Federal Aviation Administration (FAA) set stringent safety and operational standards, encouraging airlines and operators to adopt state-of-the-art navigation technologies. The widespread implementation of satellite-based systems, including the Ground-Based Augmentation System (GBAS) and GLS, has been a key factor in solidifying North Americas leadership. The region also benefits from substantial defense spending, fostering demand for advanced rotary-wing and fixed-wing platforms equipped with reliable MMRs. Modernization programs for military fleets and the rapid adoption of Urban Air Mobility (UAM) solutions further contribute to the regions dominance.
Key Market Players
BAE Systems PLC
Honeywell International Inc.
Indra Sistemas, SA
Intelcan Technosystems Inc.
Leonardo SPA
Rockwell Collins, Inc.
Saab AB
Systems Interface Ltd.
Thales Group
Val Avionics Ltd
Report Scope:
In this report, the global multi-mode receiver market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
Multi-mode Receiver Market, By Platform:
o Fixed Wing
o Rotary Wing
Multi-mode Receiver Market, By Fit:
o Line-fit
o Retrofit
Multi-mode Receiver Market, By Subsystem:
o ILS Receiver
o MLS Receiver
o GLS Receiver
o VOR / DME Receiver
Multi-mode Receiver Market, By Region:
o North America
United States
Canada
Mexico
o Europe & CIS
France
Germany
Spain
Russia
Italy
United Kingdom
Belgium
o Asia-Pacific
China
Japan
India
Indonesia
Thailand
Australia
South Korea
o Middle East & Africa
South Africa
Saudi Arabia
UAE
Turkey
o South America
Brazil
Argentina
Colombia
Competitive Landscape
Company Profiles: Detailed analysis of the major companies presents in the global multi-mode receiver market.
Available Customizations:
Global Multi-mode Receiver market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:
Company Information
Detailed analysis and profiling of additional market players (up to five).
1. Introduction
1.1. Market Overview
1.2. Key Highlights of the Report
1.3. Market Coverage
1.4. Market Segments Covered
1.5. Research Tenure Considered
2. Research Methodology
2.1. Objective of the Study
2.2. Baseline Methodology
2.3. Key Industry Partners
2.4. Major Association and Secondary Sources
2.5. Forecasting Methodology
2.6. Data Triangulation & Validation
2.7. Assumptions and Limitations
3. Executive Summary
3.1. Market Overview
3.2. Market Forecast
3.3. Key Regions
3.4. Key Segments
4. Impact of COVID-19 on Global Multi-mode Receiver Market
5. Global Multi-mode Receiver Market Outlook
5.1. Market Size & Forecast
5.1.1. By Value
5.2. Market Share & Forecast
5.2.1. By Fit Market Share Analysis (Line-fit, Retrofit)
5.2.2. By Subsystem Market Share Analysis ((ILS Receiver, MLS Receiver, GLS Receiver, VOR/DME Receiver)
5.2.3. By Platform Market Share Analysis (Fixed Wing, Rotary Wing)
5.2.4. By Regional Market Share Analysis
5.2.4.1. North America Market Share Analysis
5.2.4.2. Europe & CIS Market Share Analysis
5.2.4.3. Asia-Pacific Market Share Analysis
5.2.4.4. Middle East & Africa Market Share Analysis
5.2.4.5. South America Market Share Analysis
5.2.5. By Top 5 Companies Market Share Analysis, Others (2024)
5.3. Global Multi-mode Receiver Market Mapping & Opportunity Assessment
5.3.1. By Fit Market Mapping & Opportunity Assessment
5.3.2. By Subsystem Market Mapping & Opportunity Assessment
5.3.3. By Platform Market Mapping & Opportunity Assessment
5.3.4. By Regional Market Mapping & Opportunity Assessment
6. North America Multi-mode Receiver Market Outlook
6.1. Market Size & Forecast
6.1.1. By Value
6.2. Market Share & Forecast
6.2.1. By Fit Market Share Analysis
6.2.2. By Subsystem Market Share Analysis
6.2.3. By Platform Market Share Analysis
6.2.4. By Country Market Share Analysis
6.2.4.1. United States Multi-mode Receiver Market Outlook
6.2.4.1.1. Market Size & Forecast
6.2.4.1.1.1. By Value
6.2.4.1.2. Market Share & Forecast
6.2.4.1.2.1. By Fit Market Share Analysis
6.2.4.1.2.2. By Subsystem Market Share Analysis
6.2.4.1.2.3. By Platform Market Share Analysis
6.2.4.2. Canada Multi-mode Receiver Market Outlook
6.2.4.2.1. Market Size & Forecast
6.2.4.2.1.1. By Value
6.2.4.2.2. Market Share & Forecast
6.2.4.2.2.1. By Fit Market Share Analysis
6.2.4.2.2.2. By Subsystem Market Share Analysis
6.2.4.2.2.3. By Platform Market Share Analysis
6.2.4.3. Mexico Multi-mode Receiver Market Outlook
6.2.4.3.1. Market Size & Forecast
6.2.4.3.1.1. By Value
6.2.4.3.2. Market Share & Forecast
6.2.4.3.2.1. By Fit Market Share Analysis
6.2.4.3.2.2. By Subsystem Market Share Analysis
6.2.4.3.2.3. By Platform Market Share Analysis
7. Europe & CIS Multi-mode Receiver Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value
7.2. Market Share & Forecast
7.2.1. By Fit Market Share Analysis
7.2.2. By Subsystem Market Share Analysis
7.2.3. By Platform Market Share Analysis
7.2.4. By Country Market Share Analysis
7.2.4.1. France Multi-mode Receiver Market Outlook
7.2.4.1.1. Market Size & Forecast
7.2.4.1.1.1. By Value
7.2.4.1.2. Market Share & Forecast
7.2.4.1.2.1. By Fit Market Share Analysis
7.2.4.1.2.2. By Subsystem Market Share Analysis
7.2.4.1.2.3. By Platform Market Share Analysis
7.2.4.2. Germany Multi-mode Receiver Market Outlook
7.2.4.2.1. Market Size & Forecast
7.2.4.2.1.1. By Value
7.2.4.2.2. Market Share & Forecast
7.2.4.2.2.1. By Fit Market Share Analysis
7.2.4.2.2.2. By Subsystem Market Share Analysis
7.2.4.2.2.3. By Platform Market Share Analysis
7.2.4.3. Spain Multi-mode Receiver Market Outlook
7.2.4.3.1. Market Size & Forecast
7.2.4.3.1.1. By Value
7.2.4.3.2. Market Share & Forecast
7.2.4.3.2.1. By Fit Market Share Analysis
7.2.4.3.2.2. By Subsystem Market Share Analysis
7.2.4.3.2.3. By Platform Market Share Analysis
7.2.4.4. Russia Multi-mode Receiver Market Outlook
7.2.4.4.1. Market Size & Forecast
7.2.4.4.1.1. By Value
7.2.4.4.2. Market Share & Forecast
7.2.4.4.2.1. By Fit Market Share Analysis
7.2.4.4.2.2. By Subsystem Market Share Analysis
7.2.4.4.2.3. By Platform Market Share Analysis
7.2.4.5. Italy Multi-mode Receiver Market Outlook
7.2.4.5.1. Market Size & Forecast
7.2.4.5.1.1. By Value
7.2.4.5.2. Market Share & Forecast
7.2.4.5.2.1. By Fit Market Share Analysis
7.2.4.5.2.2. By Subsystem Market Share Analysis
7.2.4.5.2.3. By Platform Market Share Analysis
7.2.4.6. United Kingdom Multi-mode Receiver Market Outlook
7.2.4.6.1. Market Size & Forecast
7.2.4.6.1.1. By Value
7.2.4.6.2. Market Share & Forecast
7.2.4.6.2.1. By Fit Market Share Analysis
7.2.4.6.2.2. By Subsystem Market Share Analysis
7.2.4.6.2.3. By Platform Market Share Analysis
7.2.4.7. Belgium Multi-mode Receiver Market Outlook
7.2.4.7.1. Market Size & Forecast
7.2.4.7.1.1. By Value
7.2.4.7.2. Market Share & Forecast
7.2.4.7.2.1. By Fit Market Share Analysis
7.2.4.7.2.2. By Subsystem Market Share Analysis
7.2.4.7.2.3. By Platform Market Share Analysis
8. Asia-Pacific Multi-mode Receiver Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value
8.2. Market Share & Forecast
8.2.1. By Fit Market Share Analysis
8.2.2. By Subsystem Market Share Analysis
8.2.3. By Platform Market Share Analysis
8.2.4. By Country Market Share Analysis
8.2.4.1. China Multi-mode Receiver Market Outlook
8.2.4.1.1. Market Size & Forecast
8.2.4.1.1.1. By Value
8.2.4.1.2. Market Share & Forecast
8.2.4.1.2.1. By Fit Market Share Analysis
8.2.4.1.2.2. By Subsystem Market Share Analysis
8.2.4.1.2.3. By Platform Market Share Analysis
8.2.4.2. Japan Multi-mode Receiver Market Outlook
8.2.4.2.1. Market Size & Forecast
8.2.4.2.1.1. By Value
8.2.4.2.2. Market Share & Forecast
8.2.4.2.2.1. By Fit Market Share Analysis
8.2.4.2.2.2. By Subsystem Market Share Analysis
8.2.4.2.2.3. By Platform Market Share Analysis
8.2.4.3. India Multi-mode Receiver Market Outlook
8.2.4.3.1. Market Size & Forecast
8.2.4.3.1.1. By Value
8.2.4.3.2. Market Share & Forecast
8.2.4.3.2.1. By Fit Market Share Analysis
8.2.4.3.2.2. By Subsystem Market Share Analysis
8.2.4.3.2.3. By Platform Market Share Analysis
8.2.4.4. Indonesia Multi-mode Receiver Market Outlook
8.2.4.4.1. Market Size & Forecast
8.2.4.4.1.1. By Value
8.2.4.4.2. Market Share & Forecast
8.2.4.4.2.1. By Fit Market Share Analysis
8.2.4.4.2.2. By Subsystem Market Share Analysis
8.2.4.4.2.3. By Platform Market Share Analysis
8.2.4.5. Thailand Multi-mode Receiver Market Outlook
8.2.4.5.1. Market Size & Forecast
8.2.4.5.1.1. By Value
8.2.4.5.2. Market Share & Forecast
8.2.4.5.2.1. By Fit Market Share Analysis
8.2.4.5.2.2. By Subsystem Market Share Analysis
8.2.4.5.2.3. By Platform Market Share Analysis
8.2.4.6. Australia Multi-mode Receiver Market Outlook
8.2.4.6.1. Market Size & Forecast
8.2.4.6.1.1. By Value
8.2.4.6.2. Market Share & Forecast
8.2.4.6.2.1. By Fit Market Share Analysis
8.2.4.6.2.2. By Subsystem Market Share Analysis
8.2.4.6.2.3. By Platform Market Share Analysis
8.2.4.7. South Korea Multi-mode Receiver Market Outlook
8.2.4.7.1. Market Size & Forecast
8.2.4.7.1.1. By Value
8.2.4.7.2. Market Share & Forecast
8.2.4.7.2.1. By Fit Market Share Analysis
8.2.4.7.2.2. By Subsystem Market Share Analysis
8.2.4.7.2.3. By Platform Market Share Analysis
9. Middle East & Africa Multi-mode Receiver Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value
9.2. Market Share & Forecast
9.2.1. By Fit Market Share Analysis
9.2.2. By Subsystem Market Share Analysis
9.2.3. By Platform Market Share Analysis
9.2.4. By Country Market Share Analysis
9.2.4.1. South Africa Multi-mode Receiver Market Outlook
9.2.4.1.1. Market Size & Forecast
9.2.4.1.1.1. By Value
9.2.4.1.2. Market Share & Forecast
9.2.4.1.2.1. By Fit Market Share Analysis
9.2.4.1.2.2. By Subsystem Market Share Analysis
9.2.4.1.2.3. By Platform Market Share Analysis
9.2.4.2. Saudi Arabia Multi-mode Receiver Market Outlook
9.2.4.2.1. Market Size & Forecast
9.2.4.2.1.1. By Value
9.2.4.2.2. Market Share & Forecast
9.2.4.2.2.1. By Fit Market Share Analysis
9.2.4.2.2.2. By Subsystem Market Share Analysis
9.2.4.2.2.3. By Platform Market Share Analysis
9.2.4.3. UAE Multi-mode Receiver Market Outlook
9.2.4.3.1. Market Size & Forecast
9.2.4.3.1.1. By Value
9.2.4.3.2. Market Share & Forecast
9.2.4.3.2.1. By Fit Market Share Analysis
9.2.4.3.2.2. By Subsystem Market Share Analysis
9.2.4.3.2.3. By Platform Market Share Analysis
9.2.4.4. Turkey Multi-mode Receiver Market Outlook
9.2.4.4.1. Market Size & Forecast
9.2.4.4.1.1. By Value
9.2.4.4.2. Market Share & Forecast
9.2.4.4.2.1. By Fit Market Share Analysis
9.2.4.4.2.2. By Subsystem Market Share Analysis
9.2.4.4.2.3. By Platform Market Share Analysis
10. South America Multi-mode Receiver Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value
10.2. Market Share & Forecast
10.2.1. By Fit Market Share Analysis
10.2.2. By Subsystem Market Share Analysis
10.2.3. By Platform Market Share Analysis
10.2.4. By Country Market Share Analysis
10.2.4.1. Brazil Multi-mode Receiver Market Outlook
10.2.4.1.1. Market Size & Forecast
10.2.4.1.1.1. By Value
10.2.4.1.2. Market Share & Forecast
10.2.4.1.2.1. By Fit Market Share Analysis
10.2.4.1.2.2. By Subsystem Market Share Analysis
10.2.4.1.2.3. By Platform Market Share Analysis
10.2.4.2. Argentina Multi-mode Receiver Market Outlook
10.2.4.2.1. Market Size & Forecast
10.2.4.2.1.1. By Value
10.2.4.2.2. Market Share & Forecast
10.2.4.2.2.1. By Fit Market Share Analysis
10.2.4.2.2.2. By Subsystem Market Share Analysis
10.2.4.2.2.3. By Platform Market Share Analysis
10.2.4.3. Colombia Multi-mode Receiver Market Outlook
10.2.4.3.1. Market Size & Forecast
10.2.4.3.1.1. By Value
10.2.4.3.2. Market Share & Forecast
10.2.4.3.2.1. By Fit Market Share Analysis
10.2.4.3.2.2. By Subsystem Market Share Analysis
10.2.4.3.2.3. By Platform Market Share Analysis
11. Market Dynamics
11.1. Drivers
11.2. Challenges
12. SWOT
12.1. Strength
12.2. Weakness
12.3. Opportunities
12.4. Threats
13. Market Trends & Developments
14. Competitive Landscape
14.1. Company Profiles
14.1.1. BAE Systems PLC.
14.1.1.1. Company Details
14.1.1.2. Product
14.1.1.3. Financials (As Per Availability)
14.1.1.4. Key Market Focus & Geographical Presence
14.1.1.5. Recent Developments
14.1.1.6. Key Management Personnel
14.1.2. Honeywell International Inc.
14.1.2.1. Company Details
14.1.2.2. Product
14.1.2.3. Financials (As Per Availability)
14.1.2.4. Key Market Focus & Geographical Presence
14.1.2.5. Recent Developments
14.1.2.6. Key Management Personnel
14.1.3. Indra Sistemas, SA.
14.1.3.1. Company Details
14.1.3.2. Product
14.1.3.3. Financials (As Per Availability)
14.1.3.4. Key Market Focus & Geographical Presence
14.1.3.5. Recent Developments
14.1.3.6. Key Management Personnel
14.1.4. Intelcan Technosystems Inc.
14.1.4.1. Company Details
14.1.4.2. Product
14.1.4.3. Financials (As Per Availability)
14.1.4.4. Key Market Focus & Geographical Presence
14.1.4.5. Recent Developments
14.1.4.6. Key Management Personnel
14.1.5. Leonardo SPA.
14.1.5.1. Company Details
14.1.5.2. Product
14.1.5.3. Financials (As Per Availability)
14.1.5.4. Key Market Focus & Geographical Presence
14.1.5.5. Recent Developments
14.1.5.6. Key Management Personnel
14.1.6. Rockwell Collins, Inc.
14.1.6.1. Company Details
14.1.6.2. Product
14.1.6.3. Financials (As Per Availability)
14.1.6.4. Key Market Focus & Geographical Presence
14.1.6.5. Recent Developments
14.1.6.6. Key Management Personnel
14.1.7. Saab AB.
14.1.7.1. Company Details
14.1.7.2. Product
14.1.7.3. Financials (As Per Availability)
14.1.7.4. Key Market Focus & Geographical Presence
14.1.7.5. Recent Developments
14.1.7.6. Key Management Personnel
14.1.8. Systems Interface Ltd.
14.1.8.1. Company Details
14.1.8.2. Product
14.1.8.3. Financials (As Per Availability)
14.1.8.4. Key Market Focus & Geographical Presence
14.1.8.5. Recent Developments
14.1.8.6. Key Management Personnel
14.1.9. Thales Group.
14.1.9.1. Company Details
14.1.9.2. Product
14.1.9.3. Financials (As Per Availability)
14.1.9.4. Key Market Focus & Geographical Presence
14.1.9.5. Recent Developments
14.1.9.6. Key Management Personnel
14.1.10. Val Avionics Ltd.
14.1.10.1. Company Details
14.1.10.2. Product
14.1.10.3. Financials (As Per Availability)
14.1.10.4. Key Market Focus & Geographical Presence
14.1.10.5. Recent Developments
14.1.10.6. Key Management Personnel
15. Strategic Recommendations/Action Plan
15.1. Key Focus Areas
15.1.1. Target Fit
15.1.2. Target Subsystem
15.1.3. Target Region
16. About Us & Disclaimer
Content is provided by our partners and every effort is made to make Market Report details as clear as possible. If you are not sure the exact content you require is included in this study you can Contact us to double check. To do this you can:
Use the ‘? ASK A QUESTION’ below the license / prices and to the right of this box. This will come directly to our team who will work on dealing with your request as soon as possible.
Write to directly on support@scotts-international.com with details. Please include as much information as possible including the name of report or link so our staff will be able to work on you request.
Telephone us directly on 0048 603 394 346 and an experienced member of team will be on hand to answer.
With the vast majority of our partners we can obtain Sample Pages to support your decision. This is something we can arrange without revealing your personal details.
It is important to note that we will not be able to provide you the exact data or statistics such as Market Size and Forecasts. Sample pages usually confirm the layout or the Categories included in Charts and Graphs, excluding specific data.
To ask for Sample Pages by contact us through ‘? ASK A QUESTION’, support@scotts-international.com, or by telephoning 0048 603 394 346.
Whilst we try to make our online platform as easy to use as possible there is always the possibility that a better alternative has not been found in your search.
To avoid this possibility Contact us through ‘? ASK A QUESTION’, support@scotts-international.com, or by telephoning 0048 603 394 346 and a Senior Team Member can review your requirements and send a list of possibilities with opinions and recommendations.
All prices are set by our partners and should be exactly the same as those listed on their own websites. We work on a Revenue share basis ensuring that you never pay more than what is offered elsewhere.
Should you find the price cheaper on another platform we recommend you to Contact us as we should be able to match this price. You can Contact us though through ‘? ASK A QUESTION’, support@scotts-international.com, or by telephoning 0048 603 394 346.
As we work in close partnership with our Partners from time to time we can secure discounts and assist with negotiations, this is part of our personalised service to you.
Discounts can sometimes be arranged for speedily placed orders; multiple report purchases or Higher License purchases.
To check if a Discount is possible please Contact our experienced team through ‘? ASK A QUESTION’, support@scotts-international.com, or by telephoning 0048 603 394 346.
Most Market Reports on our platform are listed in USD or EURO based on the wishes of our Partners. To avoid currency fluctuations and potential price differentiations we do not offer the possibility to change the currency online.
Should you wish to pay in a different currency to that advertised online we do accept payments in USD, EURO, GBP and PLN. The price will be calculated based on the relevant exchange rate taken from our National Bank.
To pay in a different above currency to that advertised online please Contact our team and a quotation will be sent within a couple of hours with payment details.
License options vary from Partner to Partner as is usually based on the number of Users that will benefitting from the report. It is very important that License ordered is not breached as this could have potential negative consequences for you individually or your employer.
If you have questions or need confirmation about the specific license we recommend you to Contact us and a detailed explanation will be provided.
The Global Site License is the most comprehensive license available. By selecting this license, the Market Report can be shared with other ‘Allowed Users’ and any other member of staff from the same organisation regardless of geographic location.
It is important to note that this may exclude Parent Companies or Subsidiaries.
If you have questions or need confirmation about the specific license we recommend you to Contact us and a detailed explanation will be provided.
The most common format is PDF, however in certain circumstances data may be present in Excel format or Online, especially in the case of Database or Directories. In addition, for certain higher license options a CD may also be provided.
If you have questions or need clarification about the specific formats we recommend you to Contact us and a detailed explanation will be provided.
Delivery is fulfilled by our partners directly. Once an order has been placed we inform the partner by sharing the delivery email details given in the order process.
Delivery is usually made within 24 hours of an order being placed, however it may take longer should your order be placed prior to the weekend or if otherwise specified on the Market Report details page. Additionally, if details have been not fully completed in the Order process a delay in delivery is possible.
If a delay in delivery is expected you will be informed about it immediately.
As most Market Reports are delivered in PDF format we almost never have to add additional Shipping Charges. If, however you are ordering a Higher License service or a specific delivery format (e.g. CD version) charges may apply.
If you are concerned about additional Shipping Charges we recommend you to Contact us to double check.
We work in Partnership with PayU to ensure payments are made securely in a fast and effortless way. PayU is the e-payments division of Naspers.
Naspers operates in over 133 International Markets and ranks 3rd Globally in terms of the number of e-commerce customers served.
For more information on PayU please visit: https://www.payu.pl/en/about-us
If you require an invoice prior to payment, this is possible. To ensure a speedy delivery of the Market Report we require all relevant company details and you agree to maximum payment terms of 30 days from receipt of order.
With our regular clients deliver of the Market Report can be made prior to receiving payment, however in some circumstances we may ask for payment to be received before arranging for the Market Report to be delivered.
We have specifically partnered with leading International companies to protect your privacy by using different technologies and processes to ensure security.
Everything submitted to Scotts International is encrypted via SSL (Secure Socket Layer) and all personal information provided to Scotts International is stored on computer systems with limited access in controlled environments.
We partner with PayU (https://www.payu.pl/en/about-us) to ensure all credit card payments are made securely in a fast and effortless way.
PayU offers 250+ various payment channels and eWallet services across 4 continents allowing buyers to pay electronically, whether on a computer or a mobile device.